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Spinodals, scaling, and ergodicity in a threshold model with long-range stress transfer
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We present both theoretical and numerical analyses of a cellular automaton version of a slider-block model
or threshold model that includes long-range interactions. Theoretically we develop a coarse-grained description
in the mean-field(infinite range limit and discuss the relevance of the metastable state, limit of stability
(spinodal, and nucleation to the phenomenology of the model. We also simulate the model and confirm the
relevance of the theory for systems with long- but finite-range interactions. Results of particular interest
include the existence of Gutenberg-Richter-like scaling consistent with that found on real earthquake fault
systems, the association of large events with nucleation near the spinodal, and the result that such systems can
be described, in the mean-field limit, with techniques appropriate to systems in equilibrium.
[S1063-651%99)02908-9
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[. INTRODUCTION In addition, we have investigated further a previous result
[14] that the mean-fieldinfinite range interactionsversion
It is well known that the frequency-size statistics of earth-Of this model can be described by an equilibrium theory. We

quakes obey Gutenberg-RichtéBR) scaling relationg1].  find that for slow tectonic driving and long-range interac-
However, it is not known whether critical phenomena pro_tlons, the CA model demonstrates what we call local ergodic

o : o : havior. We demonstrate this using a measure of effective
duce these empirical relations. To see if this connection ex2enavio . : .

) r - i . . ergodicity developed by Thirumalai and Mountdit5,16].
Esetsl(%eﬁphysll)cmtiz 3l "?‘”.d condder;sedfmatttir phlzl S'?'Stlst This result as well as the theoretical analysis gives further
N ave been examining models ol earthquake tau %Neight to the clainf13,14] that various aspects of this model

which hopefully contain the minimal, but essential, physics

In the first of these models, Burridge and Knopft] (BK) ‘can be described by the techniques of equilibrium statistical

. s : mechanics.
constructed a one-dimensional network of slider blocks con- The remainder of this paper is structured as follows. In

nected to their nearest neighbors and a loader plate via Iine%rec Il, we briefly describe the RJB version of the BK model
elastic springs. The BK model and other modes10) in- In Sec. lll, we discuss the applicability of long-range inter-

fluenced by it can exhibit frequency-size statistics similar toactions to models of earthquake faults and develop a coarse-

SR anllng.tH?V\gever, untllt_recebnt:y no t:lhe_oretlclal ana(ljy5|$ rained theory for the long-range CA model. In Sec. IV, we
as demonstrated a connection between this scaling and Crith ¢, 5 the assumptions made in the development of this

cal phenomena. On the contrary, after analyzing the behavi ; . . . i
of a single BK slider block, Vasconcel§$2] argued that a %eory and present numerical evidence supporting their va

tive ergodicity, the energy-fluctuation metric, to the CA
i ton (CA) | int " . t the BK Yhodel and find that the system tends toward ergodic behav-
omaton ong-range interaction version of the ior as the tectonic velocity approaches zero and as the inter-

model based on the work of Rundle, Jackson, and Bro\Nr;':lction range increases. In Sec. VII, we discuss the arresting

(RJB) [4,9] that indicated the presence of a spinodal CrItIC‘f"lof nucleation events and return to the question of coarse

point, which can give rise to the GR scaling observed .'ngraining. Finally, in Sec. VIII, we discuss our results.
these models. In this paper, we report on more extensivi

investigations of this CA model. In addition to providing a Il. MODEL
fuller description of our coarse-grained theory and its as-

sumptions, we also present the results of simulations that are In this section we describe the model introduced by
consistent with this theory. In particular, we find critical Rundle, Jackson, and Brown. This model consists of a two-

slowing down as the spinodal critical point is approacheddimensional array of massless blocks that interact with their

frequency-size statistics for a wide range of realistic faultheighbors and a tectonic loader plate via linear springs with

parameters that are consistent with the values predicted gonstantsKc and K, , respectively. Initially, each block

the theory, and a strong relationship between earthquakes feceives a random positidd; from a uniform distribution.

the model and nucleation events. The loader plate contribution to the stress is set equal to zero
initially, and the stressr; on each block is measured and
compared to a threshold vale¢ . If o;<a?l , then the block

*Present address: Federation of American Scientists, Washingtois not moved. If, however(,rizai':, the block is moved ac-
DC 20002. cording to the rule

and developed a coarse-grained description of a cellular a
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oi(t)— o . [19]. While geophysicists do not know the actual stress ten-
T}[l— 7i(1) 10 (oi(t) — o7). sors for real faults, they expect that long-range stress tensors,
2.1) which are similar to the 17 inFeraction, apply to faults. It is
suspected that microcracks in a fault, as well as other “de-
Here the step functior®(x)=0 ¥Yx<0 and =1 Vx>0, fects”such as water, screen the Ainteraction, leading to a
and the effective spring constalit=K+3; ;,;T;;, where proposede” *'/r3 interaction, wherex<1, implying a slow
T;; is a matrix of interaction coefficients. The sum oyer decay to the long-range interaction over the fault's extent
includes all of the neighbors of blodk The residual stress [20]. N . _ o
ot is a parameter that specifies the stress on a block imme- In addition, a fault's interaction strength varies with and
diately after failure. All blocks are tested and moved until no€xtends over a fault's depth, which is on the order of a kilo-
block has a stress greater thafi. At this point the plate is Meter or more. Because our CA slider block models a mac-
moved. Two procedures are used. The first, which we willfOSCOPIC fault asperity, which has a linear dimension on the
refer to as the zero velocity limit, requires that we find theOrder of ten meters, the interaction range should span on the
block that has the highest . We then move the plate so that ©rder of one hundred blocks in length. To approximately
each block receives the stress that just brings the block Witﬁccougt_ for the screening and depth effects, we can truncate
the highest stress to its failure threshold. This guarantees thHt€ 1f " interaction or any appropriate long-range interaction.
in the vast majority of plate updates there will be only one N @ddition, recent observatiofi81,22 of seismic activity
initial failure site and hence one earthquake per plate updat£2!lowing some large magnitude=7 on the Richter scale
The second method we will employ is to move the plate £vents |nd|c§1te long-range cqrrelat_lor_ls of subsequent activity
fixed distance/AT, thereby increasing the stresson each ~ With the main quake, occurring within a few minutes after
block i by K, VAT. The quantityAT determines the “tec- and extending up to 1200 k(mnuch furthe.r than the typical
tonic” time scale, which is taken to bAT=1 for the mo- aftershock zonefrom the main shock. Hilket al. [21] pro-

ment. We will return to the question of this time scale in SecP0S€d models with long-range stress tensors, includiry 1/
to explain these spatial correlations.

VII. After the plate is moved, the stress on each block is :
calculated via In nature, the average earthquake stress dropis ap-
proximately 0.01-1 MPa, which is small compared to the
failure threshold ¢F~10MPa) or the breaking strength of
a()=2 TiJUj(tHKLV% O(n—1), (22 rock[23]. Consequently, the ratido/oF~0.001-0.1. For a
. fixed o in the long-range CA modelAo decreases as the
and the process outlined above is repeated. interaction range increases because the mean interaction

The step function mathematically expresses the Mohrstrength or interblock spring constant decreases as the inter-
Coulomb friction law, which has the useful property that it is action range increasel4]. To obtain a consistent ratio
always scale invariafit.7]. In this paper, we use the stochas- Ac/c" with geological faults, the CA model's interaction
tic CA model[14], in which 7;(t) is a random noise equal to region must include several hundred blocks. -
pW, where p is a uniformly distributed random number  Finally, in addition to questions of interest in earthquake
€[0,1] and the predetermined noise amplitudeéis in the  Physics, we want to investigate mean-field effects in driven
range G=W=1. dissipative systems which appear as the CA model becomes

After block i slips, each neighbor of the failed block re- more long-range. In particular, our coarse-grained theory
ceives the amount of streks[ o;(t) — o]/K, while the sys-  (developed beloindicates that a spinodal critical point in-
tem dissipates the amoumL[oi(t)—oiR]/K. This stress fluences earthquake scaling, the structure of an earthquake,

transfer may cause these neighbors to slip and so on, tht?gd thte atmquntloI tlmedretqwlred chzj]‘tqrm an ?arthqualret_dur—
initiating an earthquake, or avalanche, which continues untigi a Zcﬂ?nlc Ft’.a? up Ia egf‘an.ad. ! |tont,hef1;r|]er S|muta lons
every block haarj<o}:. The size of an earthquake equals ] and theoretical analysfd.3] indicate that these systems

. are locally ergodic in the limit of infinite interaction range.
the number of slipped blocks after each plate update. W he concept of local ergodicity will be addressed in Sec. VI.

count each slip as a block failure even if a block slips mOT€ " L now that long-range systeni85—27.14 can display

than once. In most cases of interest in this work, multiple ifferent physics than short-ranae svstems. This model. due
slips of a block during one event are rare. The count beging physics { ; ge systems. o
0 the fact that it is driven and dissipative, is a particularly

anew after each update of the loader plate. It is the propertie . . !
of the earthquakes or avalanches in this model that we havlgterestmg one on which to study this phenomenon. We be-

studied theoretically and via simulations. gin with the theoretlcal. analysis. .
In Ref. [13], we derived a coarse-grained theory for the

CA model. In this paper, we present a more detailed descrip-
lil. LONG-RANGE INTERACTIONS AND COARSE tion of this theory. We begin by rewriting Eq$2.2) and
GRAINING OF MODEL (2.1) to eliminate the position variablé;(t) and to develop
In this work we will concentrate on the long-range inter- & Stress evolution equation. Multiply E.1) by T;;, sum
action version of the CA model. We do so for the following ©Verj, and use Eq(2.2) to obtain
reasons. Linear elasticity theory yields long-range stress ten- 1
sors for a variety of geophysical applicatidris], including _ R F
. . . . . ' . (t+ 1) —oy(t) =— iloi(t)— o (—o
idealized viscoelastic faults. For a two-dimensional disloca- oitrD = =j 2 Tyl =o7]6loy(t) —oj]
tion in a three-dimensional homogeneous elastic medium, ,
the magnitudeT of the static stress tensor goes&s 1/r3 + 7 (1) KLV, (3.1

Ui(t+ 1):U|(t)+
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where the noisey; (t) = 2;T;;[ o(t) — o] ] ;(t) remains spa-  power series using the transform variabié=k. Note that
tially random as long a3 is a radially symmetric interac- with the short- and long-distance cutoffs, we have a bounded
tion, which it is assumed to be. Equatit1) gives the new function on a finite support and hence are assured that the
stress on blocki at time t+1 in terms of the previous power series ik exists. Second, we truncate the power series
stresses from block, the neighboring blocks, the loader atk? in order to express the stress tensor as a local interac-
plate, and the noise. We have assumed that blocks fail onliion between coarse-grained blocks and invert the Fourier
once per plate update, which will be discussed later in thisransform to obtain for the first term in E¢(B.1),
section and in Sec. IV.

The KV term was obtained by assuming that the stress

loading at timet+1 in Eq.(2.2), i.e., E Tij[a'j(t)—O'R]e[O'j(t)—O'F]
]

KLV B(n-t-1), 3.2 ~~aKeX 4[0}(1)~ 0™l ()~ o]

minus the stress loading at tinhevas simply the difference —K [a:(t)— aR]O[ (1) — oF], 3.3
between the two sums &t 1 andt. This point will require a
much more careful discussion, and we will return to it in Sec.

VII. where—K andgK¢ are the zeroth and second moments of
For long-range interactions, the number of neighbprs Tij. respectivelyA;; is the matrix(discrete representation
>1. Each block at lattice siteinteracts via springs with all of the Laplacian, and the sum preceding the Laplacian is
blocks at lattice sitef contained within a square interaction Over the coarse-grained blocks with a length scale set by the

region with area (R+1)2 so thatq=(2R+1)>—1. We  coarse-graining scalg"?. o _
consider two stress Green’s functior: Tj;~K¢/|T— il Next, we convert the discrete summation in k&3 into
which is truncated at an interaction rangéan infrared cut- a contmuous integral. This sftep transforn‘]snto a continu-
R , ) , ) ous variable. To carry out this step, notice that the step func-

off), where| ' j| is the lattice distance between celsndj,  yjon in Eq. (3.3 specifies that only blocks whose stress
(i) Tij=0 for [i —j|>R, wherei andj in [i - j| are thexand g als or exceeds will fail in a coarse-grained time inter-
y components of andj, andT;;=Kc/q for |i—j|<Rand val 7 and thus contribute to the summation. Consequently,
=0 otherwise. Note that these Green’s functions are similayve can compute the partial sum of only those blocks that fail
in that both weaken the nearest-neighbor interadtign We  within 7.
also assume a short-rangdtravioley cutoff in T;;, which Before we compute the partial sum, we consider what
arises due to the natural short-range cutoff of geological anflappens to the time-averaged stress on a block due to the
condensed matter systems, so fhatsA<« Vi andj. The interblockK: springs in the mean-field limit. From symme-
limit g—c° produces mean-field behavior, which is qualita-try, this stress becomes very small @ss>. We also nu-
tively different from the nearest-neighbar=4 model. For merically verified this condition by measuring the mean
both choices of the Green’s function the interaction rangestress on the blocks and comparing it to the mean stress
scales withq asR~q*2 solely due to the loader plate. Recall that the loader plate

The only physics of interest in our CA model is on length stress equalk; times the mean distance between the actual
scales greater thaR. By developing a coarse-grained de- positions of the blocks and the positions where the loader
scription[28] of Eq. (3.1), with a coarse-graining size &7, plate exerts zero force on the blocks. Within a coarse-
we can sum over fluctuations on length scales smallerBhan graining time asqy increases, the mean stress on the blocks
and retain the physics at larger length scales. We proceedpproaches the mean loader plate stress on the blocks. Using
therefore, from a microscopic description of the stresses ostandard mean-field argumen®7], it is expected that the
the individual blocks to a macroscopic description of thestress fluctuations away from the mean value approach zero
stresses on a coarse-grained block in which the stresses hesq ™12
come continuous classical variables or fields. In the remain- The above discussion implies that the blocks are weakly
der of this paper, we will assume thraf andzriR are spatial interacting with each other in the mean-field limit. Thus,
constantsr™ and o®. from the central limit theorem, within a coarse-grained vol-

To accomplish the coarse graining, we define a coarsesme on a time scale shorter than the coarse-grained time
grained cell with a volume centered at block and specify  the blocks’ stress distribution will equilibrate to a Gaussian
a coarse-grained time and we average the stress over bothcentered aboutr(X,7), whereX labels the coarse-grained
the coarse-grained volume and time. Therefardt) be-  volume. In the next section, we discuss the numerical evi-
comeso;(7) on the left-hand side of Eq3.1), where the bar dence that the stress distribution equilibrates to a Gaussian
denotes coarse-grained average. on time scales less than

On the right-hand side of E@3.1), we convert the sum- Also, within the coarse-grained time, only blocks with
mation over the individuaj blocks covering a large region stress lying betweenr, and o will fail, where 0<oy
into a summation between interacting coarse-grained blocks: o, because the loader plate will add only enough stress to
restricted to local interactions. Because the first term in Eqbring blocks with stress-y or greater to failure. Here is a
(3.1) is written as a discrete convolution, we can use Fourierparameter to be determined later. The above considerations
transform techniques to convert E(.1) into a coarse- lead to the following Gaussian representation of the partial
grained form. First, expand the Fourier transfornifgfina ~ sum:
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o (X 2_ F_ R
2> To(0- 1000~ o7 LLSUEPRVIC L S
_ F_—g
=<<rF—chNﬁ/”fUFdffeXp{—B[a—az,ﬂ]z}, x{ert=JBLo" (X, 0]} B
(3.4) —erf{VBloo—a(X, ]} - —F——=

where the prime on the summation means that the sum in- B2 (oF

cludes only the blocks that fail inside the coarse-grained vol- X ;} j R doIn

ume in a coarse-grained time. The factér— o® arises from 7

the fact that if allg blocks failed, then the left-hand side of .

Eq. (3.4 is exactlyo™ — oR in the B— limit. xexp{—Blo—a(X, T)]Z}), (3.6
In developing this Gaussian approximation, we assume

that a block fails at most once during a coarse-grain time

These assumptions are correct in the limit for V<V,

a(%,7)— 0"

or —o(X,7)

In
O'F_O'

O'_O'R}

where erff) is the error function, which came from the
U R . ) Gaussian in Eq.(3.4), and 5(X,7) is the coarse-grained
=(0"—07)/K, as demonstrated in the next section. The Vey,5ise \We can obtain the equation for the time-independent

locity V. is a good allpprox_imatio'n to 'the spinodal value fOf spatially homogeneous solutions to E§.6) by setting the
the ranges of8 we investigate in this work. Beyond this . qice and the derivatives to zero to obtain
value of the velocity, the low stress phase is unstable. A

detailed discussion of this last point will be presented in a K, (oF—a®)

g — 0
future publication[29]. In this work we will restrict our- KV= K 2
selves to a discussion of the low stress phase. However, we
will return to thi_s pqint in Sec. VII. In Eq(3.4), B specifies x{erf[B(oF—a)]—erfVB(oo— )]}
the level of noise in the system and plays the role of an
inverse temperature so thg#1 implies low noise compared Bt a—o" [B]"?
to B<1 for high noise. The quantity also determines the + P In o —ol | =
width of the Gaussian and the weight assigned to the “en-
tropy” term, developed below. Because @6 dual roles, we o" o—oR 5
assume that the Gaussian and “entropy” terms have the XLR doln —r—lexd —B(o—0)7] |.

same noise dependenf®0]. The quantity/B/m approxi-
mates the normalization fg8>1, which follows because a 3.7

large B produces a narrow Gaussian distribution and allows.]_he right-hand side of Eq3.7) represents the rate of stress

F . . . . . . . .
0" 1o be replaced by infinity in the upper integration limit, dissipation over the coarse-grained time and system volume,

causing negligible error in the normalization. In this work we - .
always assum@>1 since small amplitude noise is what is _and the left-hand side of Eq3.7) equals the rate of stress

expected on earthquake faults input into the system.
Finally, we derive an “entropy” term that counts the The initial conditions specify all the parameters except

e f (o)t tisnute the sl svess 7, WE S Setemines b conaderng e it
go(X,7) among theq blocks within a coarse-grained vol- 9 y

ume, where the stress values range fiofto oF . Over the noninteracting. This noninteracting effect occurs because if

- ' I~ . gvery block interacts with all other blocks, there can be no
coarse-graining time, the stress inside a coarse-grained vol-

ume will tend to cluster around the mean value of this Stresgpaﬂal scale for fluctuations so that the interactions can be

range, i.e.5=(o" + oR)/2. The entropy equals minus the combined into an effective or mean field. By assuming that

logarithm of the distributioN(a(%,7)). For nonequilibrium every block interacts with all other blocks, we can still cal-
9 . I\ 7))- L d culate mean-field thermodynamii@3], and we have that the
thermodynamical systems near equilibrium, where the long

nati G —_( F
range CA model is such a systdi¥], the system’s entropy spatial and temporal average of(X,7) must beo=(o

; . + o) /2. Substitutingo into Eq. (3.7) and noting that the
can be expressed as the potential of a generalized {eeee “entropv” term equals zero for thig we aet the followin
e.g., Ref[31]), which gives the following term: equatigﬁ' q Wed 9

55(?()’(’,7'))__ dInN(o(X, 7)) Bt o(X,7)—oR F F R

oF +oR

_ R _
Soxn  sekn) o =ofM oF=oxn) UZKU [erf[ﬁeo 2“ —erf[\/ﬁ(ao— ; “:v,
gt o o—oR (3.9
- TF_ Rf Rd0'|n F_
7T Je T which we can solve forr.

X expg{ — Blo—o(X,7)]%} (3.5) Now that we have derived the coarse-grained equation,
we can obtain the physics of the CA model after specifying

for the o(X,7) equation of motion. the four parameters3, K/K,, VK., and @™ —o")/K,

To obtain the coarse-grained equation of motion, we comwhich determine the behavior of the equation and the model.
bine Egs.(3.1), (3.3, (3.4), and(3.5), take the temporal and Using the values of these parameters representative of those
spatial continuum limits, and obtain for real earthquake faults, such thst-/o™~0.001-0.1 and
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‘ ‘ ‘ ‘ mines the spatially and temporally averaged stresst
which the rates of stress dissipation and input balance each
other.

Analyzing the solutions of E(3.6), we make the follow-
ing observations. In Figs. 1 and 2, the intersection of the
horizontal line representing the mean velocWyand the
curve representing the right-hand side of E}6) occurs in
the low stress regime. In simulations of the CA model with
approximately the same parameteis, is approximately
equal to the values in these figures obtained from the coarse-
grained equatiori3.8) Because the steady-state solutions in
Figs. 1 and 2 come from a mean-field theory, we do not
expect these solutions to agree exactly with the simulations,
, , ‘ , which are limited to finite, but long-range, interactions. What
10.0 20.0 30.0 40.0 50.0 happens if eitheAo is decreased oY or is increased, or
coarse-grained stress both? The curves would then intersect at two additional posi-

FIG. 1. Solution to the time-independent spatially homogeneouélve values neatr=50. Although both of these intersection

Eq. (3.7), using parameter = 100, 0" =50, oR=10, =5, and points belong to high stress regimes, the left intersection
V=0.005. The solid line represents the rate of stress dissipatioﬁ|0Wer strespis unstable, and the right orieigher stressis

from the right-hand side of E¢3.7), and the dashed line represents metastable. In stress space, a very small distance ;eparat_es
the rate of stress input from the left-hand side of Bj7). these metastable and unstable states. Observe also in the fig-

ures that the well depth decreaseskagcreases, thus de-
V~0, we numerically solve the time-independent Spatiallycreasmg the range of d_nvmg velocities over which the sys-
homogeneous equatidB.7) to illustrate some important as- tem can explore t.he higher stress .states. For even higher
pects of the theory. As noted in Sec. I, a typical CA sliderValues ofV, the high stress phase is stable while the low
block dissipates an amount of stregsr= (K, /K)(o" stress phase is metastable Mfis set higher still, the low

—o®). We choose values df, , K, 0", ando® that give  SI'eSS phase ceases 1o exist. o
Aolo values consistent with real faults. In Fig. K, =1 Even though the top of the rate of stress dissipation curve

K=100 o*=50 andoR=10 so thatAo/oF=8x 103 appears flat, it is slightly curved with a curvature that de-
and i ’Fig. > v’ve increas& to 1000 SO thaTAa'/(TF=’ pends orB. For smallerg, the top becomes more curved. In
8x10~4. For both figures, we us@=5, assuming that noise contrast, f_or largeis, the curve steepens and approaches a
does not strongly influence the fault, and we ¢et0.005 to step function, a|_1d the well becomes deeper and tends toward
slowly drive the system. To obtain these curves, we alséhe half—way point between the top and bottom of the curve.
need to compute,, which we numerically calculated from As discussed in Re{.13], the top of the curve and the bot-

Eq. (3.8). In Figs. 1 and 2, the solid curve comes from thetom of the well delineate spinodal critical points, which

right-hand side of Eq(3.7) and equal the mean rate of stress zgga{)ﬁ? n:ﬁ'([aasstai?]lg daarlldcrlftri]s;?blgiﬁztilsésBe}; Itr(]) Crtﬁ?lrma?e of
dissipation, while the dashed straight line comes from the 9 P P

eftrand sid of£66 7 nd e the mean e of svess 53 TRUL IS, Comsetueny, =2 e mersecion b
input. Therefore, the intersection of the two curves deter- . Ping P ’ ystem y
experience critical behavior such as scaling induced by th the

spinodal. In Sec. V, we present simulation results that dem-

0.1 ]

00 Fo======——coog - .

rate of stress dissipation and input

0.08 .
onstrate the effects of the spinodal.
0.06 - k
IV. COARSE-GRAINING ASSUMPTIONS
0.04 | | In this section, we present simulation results relevant to

clarifying the coarse-graining assumptions used in the pre-
ceding section. The three assumptions we examine are as
0.02 |- . follows. (i) The number of times a block fails per coarse
graining time is one(ii) The stress at which the blocks fail is
—————————————————————————— o™ and not greatefiii ) The time-averaged stress distribution

rate of stress dissipation and input

0.00 i within a coarse-grained volume is a Gaussian. These as-
sumptions are all made in the mean-fietg§) limit.
0.02 The assumption that a block should fail no more than

100 200 30.0 40.0 500 once during a plate update gs»= for V<(oF— oF)/K (the
coarse-grained stress . Loy . . .
spinodal velocity is tested in Fig. 3. We show a log-log plot

FIG. 2. Solution to the time-independent spatially homogeneou®f the number of multiple failures normalized by the total
Eq. (3.7), using the same parameters as Fig. 1, ex¢epti000.  humber of failures. Since the value Kfused in the simula-
The solid line represents the rate of stress dissipation from the rightions is large, we test the assumption %0 to satisfyV
hand side of Eq(3.7), and the dashed line represents the rate of<V,. The data show that this ratio decreasegas. Con-
stress input from the left-hand side of E.7). sequently, the simulation results validate the assumption that
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0.002
0.001 |
0.002 =k

0.001 -

Multiple Failures/Total Failures

N(bin)/N(total)

0.002

-6 , . 0.001

0.000 - . v .3 L h: udl®, . %
FIG. 3. The number of multiple failures normalized by the total 0 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
time averaged stress

number of failures versug, where the number of plate updates

=35000, using parameter& =1, Kc=200, oF=50, V~0, FIG. 5. Histograms of the time-averaged stress in a coarse-

256x 256 system sizey=0.3, and theK /g interaction. grained volume containing 256256 blocks with bin size equal to
0.02 in units of stress, showing the temporal evolution of the stress

the multiple failures can be ignored gecomes large. in the system, where the earliest to latest times go from left to right

We also assumed that a block’s stress before failure doemd top to bottom. These plots correspond to an increasing number
not exceedr" in the g—oe limit for V<(oF—oR)/K. Fig-  of cumulative failures in terms of the percentage of the total number
ure 4 shows that agbecomes large, the time-averaged valueof blocks that have failed, where the percentages are 20.4, 33.0,
of the failure stress that exceedS decreases almost linearly 432, 55.5, 65.3, 76.8, 86.3, 95.6, and 105.8. The data were col-
with g. Thus, the simulations again validate the assumption'.eCted only after each block had failed several times. The binned
Note that for the first two assumptions tested with datasimulaltion Qata are represented by circles, while the solid curve is a
shown in Figs. 3 and 4, we used a very large valu&gf Gaussian fit to the data. The other system parameters'a+es0,
—200. Because this value typically produces a great numbdft =1 V~0, W=0.3, andKc=1.
of multiple failures and high values of failure stress relative

to o= for small g, th ta signi tringent test of th : . e
;S;ngtisnsa g, these data signify a stringent test o eNotlce that after about20% failures, the stress distribution

Next we present evidence that the stress within a coars%early deviates from a flat distribution, which is the distri-
; . o fai
grained volume becomes Gaussian distributed within a sho ution after a single plate update. After10% failures, the

time scale compared to the time required for all the bIocksStreSS distribution appears Gaussian distributed, and it be-

within that volume to fail. Figure 5 shows binned temporally COMES more So as more fa|llures oceur. The solid curves in
averaged stress within a coarse-grained volume of sizE'9- > come from Gaussian fits to the data, _where the results
256% 256. The sequence of plots depicts the evolution of thi re?/e"rfk;icrj I-RA;—?E)JISN;"[ Eet%%rgpggenéﬁi;tii tt\i/:/ﬁe zﬁjsﬁ? the
time-averaged stress from20% to 100% of the blocks fail- Table | gbservqe that the amplitudk increases v?hilé the
ing (the caption shows the exact percentagBgfore com- ’ P

puting the temporal average of each block's stress thgean?and the standard deviatian decrease as the stress
’ i

satrily 1t ~2
blocks failed several times each to allow the system to mov stributions eyolve. Ther and’y” decrease means t_hat the .
its are becoming narrower and closer to a Gaussian distri-

bution. The mearnx approaches the value predicted by the
steady-state solution to the mean-field theory. These fits
show that the stress distribution equilibrates to a Gaussian on
. a time scale shorter than the time required for all blocks to
o 3 fail.

away from the transient state due to the initial conditions.

. V. THEORETICAL PREDICTIONS
30 ] AND SIMULATION RESULTS

In this section, we develop scaling relations relevant to
- | ] the long-range CA model and present simulation results that
are consistent with these relations. Our basic premise is that
the scaling relations that are seen in the model are caused by
‘ ‘ the spinodal critical point. However, unlike most attempts to
10° . 10° 10* associate the scaling of the earthquake events in slider block
or avalanche models with critical fluctuatiofa-9], we as-

FIG. 4. Time-averaged excess stress normalized"byersusg, sociate the large earthquake events with arrested spinodal

using the same system parameters as Fig. 3. nucleation droplets and the small events with critical phe-
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TABLE |. Gaussian fit parameters corresponding to the curves in Fig. 5, where the fitting form is
=Aexp{—[(x—X)/o]?}. The two leftmost columns contain the percentage of the number of failed blocks
compared to the total number of blocks in the coarse-grained volume and the cumulative number of failures
that determined the “% failure” column. The rightmost column lists the reduygedf the fit.
% failure Slips A(X1079) X o Y3(X1079)
20.4 13,349 0.6780.007 31.526:0.233 20.4550.479 2.747
33.0 21,624 0.7680.007 31.27%+0.171 17.18%+0.334 2.712
43.2 28,281 0.89#4 0.008 30.9090.118 13.826:0.215 2.295
55.5 36,357 1.01#£0.008 30.5730.089 11.86%0.160 2.116
65.3 42,795 1.14F%0.008 30.3730.069 10.3130.121 2.163
76.8 50,355 1.2720.008 30.2250.055 9.216:0.097 2.013
86.3 56,557 1.3750.008 30.063:0.047 8.485:0.083 1.788
95.6 62,673 1.4460.008 29.91%#0.043 8.094:0.075 1.529
105.8 69,365 1.4780.008 29.826:0.041 7.92@¢0.072 1.377
nomena fluctuations. We will return to this point at the end dP(X,1)
of this section. In order to explain our point, we will briefly =—~MRY - V2¢(X,t) — 2| e[ p(X,t)
review the spinodal nucleation idea and explain the concept
of arrested nucleation, which we will return to in Sec. VII. +4¢3(X,t)—h], (5.3

Spinodal nucleation is concerned with nucleation near the

spinodal critical point in systems with long-rangeut not
infinite) interactions[33]. The reason that long range is es-
sential is that spinodal effects are not seen in models Witlg
short-range interactions, as will be seen below. However,
a practical matter, in models with long-range interactions

such as the CA model we are considering, spinodal nucle-
ation is the dominant event. The classical events will be
strongly suppressed, as we will see bel@].

We begin our discussion of spinodal nucleation with the

partition function. This would be the functional integral of The minima of the free energy corresponding to phases are

the right-hand side of Eq3.6). To simplify the discussion,

we will use a simple ‘%*” theory. Since we are only inter-
ested in the scaling dependence of various physical quanti-
ties, this model will suffice. The partition functianis

2
2~ [ 56 exp[— dl di(%(vax*))%e#(x*)

+¢4(>?)—h¢(>?))

Hereeis T—T,, T, is the critical temperature, aridcan be
thought of as an applied magnetic field or a chemical poten
tial. We can scale all lengths with the interaction rafgend
in the R>1 limit obtain the free energy per unit volumk,
from a saddle-point evaluation of E(p.1). Using the rela-

tion [35]

Ip(Xt)

M 5f(¢)’

ot

we define the Langevin dynamics for this system. Hdres

o¢

where we have takeM<T_.. The equilibrium values of the
order parameterp(X,t) can be obtained from Ed5.3) by
etting all derivatives equal to zero and assuming a solution
Fhat is a temporal and spatial constant. The free energy per
unit volumef is then

f=—|elp?+ ¢p*—ho. (5.4

then the solutions to

—2|elp+443—h=0. (5.5

As is easily seen foe<0, there are two minima. Fdr>0,

the >0 minimum has a lower free energy per unit volume

f than the one withp<<0 and represents the stable phase. The
minimum with negative value o represents the metastable
phase and has a higher value of the free energyhAs
increased, the metastable minimum becomes shallower, and

finally at h=hg the metastable minimum disappears. This
value ofh is referred to as the spinodal value of the field and
¢= ¢, the value of the metastable minimum whies hg,

is the spinodal value of the order parameteMe are inter-
ested in the mechanism of nucleation out of the metastable

well for Ah=h—hs<1, R>1, e<0 and fixed, and hence
¢~ ¢s. This problem has been addressed both theoretically
[34,36,37 and via simulation$25,38-44Q.

The initial step in the theoretical treatment is to find the
spinodal values ot andh (¢ andhg). These values mark
the place where the metastable well vanishes. Hesagand
hs must be solutions of E¢5.5), and

a mobility which we will take to be a constant and we now
assume a time dependence #(X,t) given by the Langevin
equation(5.2). One could add a noise to the right-hand side
of Eq. (5.2), but it will be irrelevant for our considerations.

From Egs(5.1) and(5.2), and scaling all lengths witR, we

obtain

—2|e|+12¢2=0, (5.6)

since ¢ is an inflection point. We now define a new field
P(X,t) = ¢(X,t) — ¢ps and rewrite Eq(5.3),
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where (x) is given in Eq.(5.13), into

ap(x,t) P*P(x,1)
= —MRY — T+Ah—c¢,//2(x,t))

: (5.7 (5.15

- 1/2
‘W;‘t) ——M Rd{ —V2p(X,t) — 12(U) PA(R,1)

€
6

+443%(X,t)+Ah

where we have used Eq$.5) and(5.6) and the fact thatb, and linearize With respect tt;(x_,t), which is assumed to be
is a solution of Eq(5.5 whenh=hg. We now assume, and a small perturbation. We obtain

will demonstrate below, tha#(X,t)<1 so that we can ig- 9 t 52 t
3/ . 2/ 77(Xa ) d 77(X1 )
nore °(X,t) relative to*(X,t). We stress thajte|>0 and P MRY| — —Z

does not approach zero. It dh that approaches zero as we
approach the spinodal in this analysis. The fundamental
equation for nucleation near the spinodal is then

Ah 1/2 Ah 1/2
vacl (] o )

IP(X,t
"[’;t )=—MRd[—v2¢(>z,t)+Ah—c¢2(>z,t)], C C
(5.9
where we have st = 12|¢|*%/6"2. 1 x0|. 516
The nucleation or critical droplet is assumed to be an ClaphY4 AL
equilibrium fluctuation([see[34,35,41-43 and therefore costf| ———x
should be a solution to the time-independent form of Eq. \Z

(5.8), This equation has solutions of the formy(x,t)

—V2y(X) + Ah— C (%) =O0. (5.9 =e MXp;(x), where the\; are the eigenvalues associated
with the eigenvectorsy;(x) of the operator
To understand how the droplet scales, we do not have to

d?7;(x)
solve Eq.(5.9). We need only note that N7 (x)=—MR?| —
B 117 dX2
J(X)~ (Ah) Y2y (x(Ah) Y4, (5.10
where ¢(X(Ah)"% is of order 1 and a solution to Ah\Y2 [ Ap) 22
o o +2C (?) _3(F)
—V2(X)+1—Cy?(X)=0. (5.11)
In order to see that this is indeed a critical droplet, we can
specialize to one dimensiom £ 1) [37]. In one dimension, 1
Eq. (5.9 reduces to X CUap 1/ n(x)| . (619
costf| ——x
d?i(x) ) ( V2 )
i +Ah—Cy“(x)=0. (5.12

Equation (5.17 has the form of a time-independent

There are two boundary conditions required by the equaSchralinger equation with a shallosince Ah<1) well.
tion and those are fixed by physical considerations associatédn€ expects that there will be both positive and negative
with the idea of an isolated droplet. First,sas»= we expect _elgenvalues corresponding to bound and free_ states. This is
#(x) to approach its value in the metastable stéitg,. This indeed the case. One can shi@4,37 that there is one nega-
can easily be seen from E@.7), once all derivatives are set Ve €igenvalue and a continuum of positive eigenvalues. The
equal to zero, to bey,,.= —[Ah/C]Y2 The second boundary eigenvector with negative eigenvalug,(x), is then un-

condition is that the droplet should be smooth so that wet@ble since its amplitude grows exponentially with time.
expectdy(x)/dx=0 atx=0. With these conditions, the so- One can easily sef34] that the eigenvector with negative

lution of Eq. (5.12) is eigenvalue has the form
A 1/2 Ah 1/2 1
- X)~ . 5.1
P(x)= —(?) +3 ?) STV 70(X) CUAA R4 (5.18
costf| ———x cosh?| ————x
Vi V2
(513 It is also easy to see that the negative eigenvatieg,
which has all of the scaling properties derived above. where,>0, scales ash? This implies that the droplet
We now test the stability of this solution to EG.12 by ~ Whose profiley(x) is given in Eq.(5.13 is a saddle-point
performing a linear stability analysis. We insert solution to Eq.(5.12 and that the system can move away

from the metastable state via the growth of this saddle-point
P(X, 1) = P(X)+ (X, 1), (5.14  droplet. Moreover, the scaling of, with Ah2 implies that
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the growth of the droplet slows @sh—0. That is, the char- 10

acteristic growth time; scales ad\h~ 2. Before discussing

the simulation test of this prediction, there are other quanti-

ties that we can predict from the theoretical treatment of the

CA model which can also be tested via simulation. In order

to obtain these predictions, it is necessary to go a bit deeper

into nucleation theory. .
As stated above, one of the main assumptions of nucle- -

ation theory is that the critical, or nucleating, droplet can be

viewed as an equilibrium fluctuatidd-3]. This implies from

Egs.(5.1) and(5.7) that the probability of a critical droplet is

proportional to the partition function evaluated at the saddle-

point solution associated with the critical drople4,43.

The proportionality factor, or prefactor, comes in two parts 10 7o 7 0

[35,44). The static part is given by the Gaussian integral K

associated with the steepest-descent part of the saddle-point

evaluation of the partition functiof84,35,43. The form of

the static part to the prefactor & 9~R™9AhY4,

FIG. 6. Log-log plot of the mean equilibration time to form a
cluster per plate update versus the effective spring conktanhe

S ircles are for a 258 256 system withV~0, oF =50, K, =1, W
The kinetic part of the prefactor depends on the form OfC: 0.3, andg=1088 using the&K/q interaction. The diamonds are

the dynamics .driving the system. In particular, it dg_pends ONy 4 128¢ 128 system withv~0, oF 50+ 10 (random uniform
the conservation laws and how conserved quantities COUPIQcii ition of failure threShijS,O’R:O K. =1, andg~10000

to th? VquabIW(x). _In the Langevm_dynamlcs we are dis- using the Ir® truncated interaction. The straight line has a slope of
cussing in this section, as well as in the dynamics for the%, the predicted mean-field exponent.

earthquake model, the kinetic prefactor scaled h¥?[34].

Combining these factors, we obtain the probability pernumber of time steps required for the system to relax after a

unit time of a critical or nucleating droplé?,(Ah) to be plate update. Taking the time average of each equilibration
1o s dla t?me over all plate updates Qetermines the mean equilibration
P (Ah)= AAh™“exd —BBR"Ah 1 (519 lme which is the mean time to form an earthquake. Our

n & ' ' prediction is that this equilibration time will scale with the

correlation length in analogy with the¢*” model. To ob-
The constant& andB are independerii37] of Ah and are tain this scaling in variables appropriate to the CA model, we
not relevant to our discussion. The factbhh™ 2 sets the note that from Eqs(3.6) and (3.7), K behaves as a field,
time scale. Since the droplets are assumed to be independeimilar to the external magnetic field in thg* model dis-
of each other, theR,(Ah) is proportional to the number of cussed above. That is, varyirig either brings the system
droplets per unit volume. From E(p.19 it can be seen that closer to the spinodalincreasingK) or moves it further
for a fixedAh, P,(Ah) is exponentially damped iR. Inthe ~ away. The location of the spinodal faf~0 will be K~*
mean-field limit, R—, nucleation is completely sup- ~0. The correlation length, or mean radius of gyration, of
pressed. However, for fixeR, which is more in line with the earthquake clusters will scale as
simulations, the exponential part Bf,(Ah), usually known 14
as the nucleation barrier, can be made smaller by decreasing §~K™, (5.21)
Ah. Due to the exponential dependence/dm the probabil-
ity of a critical droplet remains quite small until the argu-
ment of the exponential becomes of order 2—3. This is usu
ally referred to in the literature as the Beckerfidg limit or
limit of metastability[40]. Nucleation will occur from the tg~§2~K1’2. (5.22
metastable state on some time scale no matter what the size
of the nucleation barrier. For practical purposes, however, i his relation means that &increases and brings the system
simulations such as the ones we are performing, nucleatiogloser to the spinodal, the mean time to form an earthquake
will occur only in the vicinity of the Becker-Dang limit increases, corresponding to critical slowing down as ob-
where the time scales become attainable. For this discussi®erved in condensed-matter systems near critical points. Fig-
we do not need to know the precise value of this limit. Weure 6 shows that for large=1088 (circles, but much
only need to note that the condition that nucleation occusmaller than the system sizg,follows a power-law form of

in analogy toé~Ah~#in the ¢* model. Direct comparison
of Eqg. (3.5 with Eq. (5.8 leads to the conclusion that the
characteristic, or growth, time

only in the neighborhood of this limit implies that ty~ K391 However, as the interaction region includes
more blocksg~ 10 000(diamond$, or becomes more mean
RIAh~¥=¢gd=DAh" 3?2 (5.20 field, the data points approach the predicted mean-field result
given in Eq.(5.22.
whereD is a constant independent ah. A very interesting and important aspect of these data

We are now in a position to derive one of the three scalingvhich not only impacts on our understanding of this class of
relations we have tested with simulations on the CA modelmodels, but also has implications for understanding spinodal
The first is a scaling relation between the mean equilibratiomucleation in condensed-matter systems, is the large value of
time teqi and K. The equilibration time is defined as the g required to see the critical slowing down predicted by the
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mean-field theory. Large values gfallow the spinodal to be 10
more closely approached by raising the nucleation barrier

[see Eg.(5.19] and hence decreasing the value &h

needed to reach the Becker4rgy limit.

In order to derive the next two scaling relations, we need 10° |
to introduce the idea of arrested nucleation. We begin by
noting from Eq.(3.7) that the low velocity phase is a low
stress phase. As the system is brought closer to the spinodal
by raising the velocity or the coupling constaft the low 10}
stress phase becomes metastable and the high stress phase
becomes stable. One would expect then that nucleation
would take the system from the low stress metastable phase
into the high stress stable phase. However, the high stress W .1 .
phase is not seen in the simulations performed in this work. 10 K 10 10
Our hypothesis is that the nucleation process is stopped, or _
arrested. We will discuss the mechanism responsible for FIG: 7. Log-log plot of the mean cluster siseversus the effec-

i . T F
stopping the nucleation events in Sec. VII. In this section wqtlve spring constank. The 256<256 system has/~0, o~ =50,

. o =1, W=0.3, andg=1088 using theK./q interaction. The
will pursue the consequences of this idea.

. L. . straight line has a slope of 1, the predicted mean-field exponent.
Our working hypothesis is that large stress saddle-point 9 P P P

objects occur as in the theory outlined above. These objects — ARl
s~ &9Ahe, (5.23

are stopped or arrested and decay. The release of the stress
from the high stress region during the decay is the earthFrom the condition that nucleation take place near the
quake. We have found these high stress regions in simul@ecker-Daing limit and Eq.(5.20, we have
tions, and those data will be presented in a future publication o .
[29]. s~Ah™ - (5.249

Since the earthquake is associated with the release of . the ab di . thi lation i
stress, the number of failed blocks should be proportional t s n f?( an?Vte' EiuZ?]'?? w?hcrt:l_lezp;_ehssd ![S re 2.'0n n
the number of high stress blocks. That is, we are claimin erms ofr. that is, _ sothats=r. The datain Fig.
that the high stress region defines the region of the earth- & clearly consistent with this prediction.

ke i thg del gt' ty si Igt d and that th Finally, in this section we derive the exponent for cluster
quake In this model as It 1S presently simulated and tha caling. Since critical slowing down is only cleanly attain-
Gutenberg-Richter scaling, as well as other scaling laws, ca

. ¢ q th istical distributi ble for extremely large|, we will remove it from the cal-
be obtained from understanding the statistical distribution o, ,|ation of nucleation rates by measuring the number of clus-

the ?]'_gh stresshreglons._ o believe that the onii€"s. O SiZ€S Nc(s), normalized by the total number of
This raises the question as to why we believe that the only) siers. This takes the time element out of the calculation.

b!OCkS that fail .in the. earthqugke are tr_]ose originally i.n the\Ne expect then that the number of critical droplets over a
high stress region. First, that is essentially what the S|mulaﬂme scale proportional tavh~¥2 is proportional to& ¢

tions show in this work and in other versions of the model ST ;
. .~ ~'where we have used E.19 multiplied by the time(pro-
we have studied29]. The number of breakout events is a ortional toAh~1?) and assumed, as usual, tRS h32- 44

small fraction of the total number and that fraction decrease
as we increaseq. In addition, the time scale between break- Be
out events and the time scale over which the fluctuation metfn

ric analysis indicates that the system is ergodic are of th‘ﬁwe number of earthquakes or clusters per unit volume scales

same ordef45]. d d i
Second, we have done an analysis of what conditionsasg - But ¢Tis refated tos through

would favor such a containment and what would favor brea- S g4, (5.25

kout from the high stress region resulting in a characteristic

event in which approximately all blocks in the system fail This follows from Eqs(5.20 and(5.23. Clearly this implies

[46]. That study indicated that the stress profile in the modelfrom the above discussion and E§.19 that

as it is run in these studies, is too rough for a significant

number of breakout events to occur and that the statistics

will be dominated by scaling events that are contained within ”C(S)N??' (5.26

the original high stress region. The stress profile is defined as

the field o© — o(X,t). By rough we mean a surface defined  Figures 8 and 9 demonstrate that the simulations confirm

by the stress profile id=2 with a fractal dimension greater this analytic result. Note that even with the two different

than 2.5. forms of the long-range interaction, as shown in Figs. 8 and
With these considerations the mean mass of the clusters9, the model produces the same mean-field exponent.

will scale as the mean mass of the nucleation or critical drop- This scaling exponent for clusters, together with assump-

let. From Egs.(5.10 and (5.13), the density of the critical tions of how the slip scales with the number of failed blocks,

droplet scales adh'? and its volume ag®. This implies translates into a Gutenburg-Richtervalue of 2. If critical

that the mass of the critical droplstscales as slowing down is included in the nucleation rate, the same

a constant since nucleation takes place only near the
cker-Daing limit. From our assumption that the mass of
e earthquakes scales like the critical droplet, we have that
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10° S e N — : not be affected by the fact that the smaller clusters associated
] with the critical phenomena fluctuations scale differently
il 8 than arrested nucleation droplets since the mean cluster size

is dominated by the much larger clusters associated with ar-
rested spinodal nucleation. The approximate size of these
two types of objects is estimated below.

Finally we point out that, while critical phenomena fluc-
tuations can explain the smaller cluster end of the cluster
scaling curves in Figs. 8 and 9, they cannot explain the upper
end of theses scaling plots. Conversely, arrested nucleation
droplets have the right scale for the larger end of the cluster
scaling but not the lower end.
el e To see this, we return first to the mean sigeof the

oy 10’ 1% 10° 10’ arrested nucleation droplets given in E§.23), i.e.,

S

FIG. 8. Log-log plot of the number of clusters(s) with s s=¢9ANY2 (5.27)
failed blocks divided by the total number of clusters. The
128x 128 system was run with~0, oF =50, oR=0, andK, =1,  Since9AhY?=gAh~Y2in d=2, we have that the arrested
using the truncated a7 interaction. The triangles are f&¢=9.95  nucleation droplets have a mean siel10®. Clearly this is
and the squares correspondKe= 90.45. The slope of the straight only an estimate, bigis consistent with the upper end of the
part of the curves is 1:50.1 for the triangles and 1.380.15 for  scaling plot in Fig. 9. We expect some spread in the size of
the squares. Both slopes are consistent iths predicted by the the arrested nucleation droplets, but if the mean size is of
theory. order 16 it is difficult to imagine nucleation or activation

. . events at a scale of order 10, which is the lower end of the
arguments used above give a cluster scaling exponent of Zajling plots in Figs. 8 and 9.

and ab Value Of 1. The reader interested in the details iS The solution to this pr0b|em we believe is to consider

referred to Ref[47]. another mechanism for events at the smaller mass scales.
As we mentioned above, the arrested nucleation dropletgjnce we are near a mean-field spinodal, or more precisely a
are associated with the large events. The smaller events Wseudospinodal, we should expect critical phenomena fluc-
associated with the critical phenomena fluctuations near thgations as well as arrested nucleation droplets. This is in
spinodal. Since the clusters associated with the spinodal Cfitbnalogy with the standard¢*” models [34]. We can esti-
cal point have the same scaling as the arrested nucleatiQfate the size of the clusters associated with the critical phe-
droplets without critical slowing dowii48,49, we would  nomena fluctuations by first noting that the distance from the
expect the same scaling for both regions of the cluster scakpinodal of the simulations that gave rise to the scaling plots

ing curves in Figs. 8 and 9. There should be a relative disiy Figs. 8 and 9 is of order I&. We can see that first by
placement in the straight lines but the normalization with thfhoting that ifK ~1 is used as a scaling field as it is in Fig. 8,

total number of clusters makes this displacement impossiblge straightest line is fok ~ 107 In Fig. 9, where a slightly
to see. . _ . different form of the potential is used, the value Kfis

The scaling curve for the mean cluster size vel$wsill 55 10-2. Note that Eq.(3.8) implies that forV~0 the
spinodal value oK ~1~0.

For critcal phenomena clusters near spinodals, the mass or
mean size scales as

Ahllz
S~ W RdAhidM. (528)

n(s)

The derivation and details of this scaling can be found in
Refs.[25] and[50]. With Ah~10"2? andd=2 we have that
the size of the clusters associated with critical phenomena
fluctuations is on the order of 100. Note that the mean cluster
size is an average over all clusters and hence is dominated by
the larger clusters in the scaling plot. The mean size of 100
- . . gives us an estimate of the region of the upper end of the
s cluster scaling associated with the critical phenomena clus-
ters. Larger clusters would be in the exponential decay. This
FIG. 9. Log-log plot of the number of clusters(s) with s  indicates, as stated earlier, that associating the larger end of
failed blocks divided by the total number of clusters. The the scaling plot for the “earthquakes™ with critical phenom-
256x 256 system was run with/~0, oF=50, W=0.3, K, =1,  €na fluctuations is untenable.
K =50, andg= 1088 using th& ¢ /q interaction. The slope of the As a footnote to this section, we want to point out that the
straight part of the curve is 1#50.1, which is consistent with the derivation of these scaling laws implicitly makes use of the
theory’s prediction ofs. fact that there is only one divergent length in the system that
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controls all singular behavior. This is the so-called hyper-
scaling assumption. In general, mean-field systems do not
have hyperscaling except in the upper critical dimension, s} 1 ool
which in this case is §37]. However, the condition that

nucleation take place only in the vicinity of the Becker- £ oozt 1 002
Doring limit fixes RIAh®2"%* and restores hyperscaling. oot | | ool
The discussion of this point is subtle. The interested reader ’

can find the details ifi50].

0.04 - 0.04

VI. ENERGY-FLUCTUATION METRIC AND ERGODICITY

We have been applying equilibrium statistical mechanics o
to the CA model. Before we can use these methods, we musF
establish that this model displays the characteristics of an
equilibrium system under the conditions we have used in the
simulations. Recently, Rundlet al. [14] demonstrated that 0.00 - o~ e o 2500
the CA model exhibits Boltzmann fluctuations in its internal n n
energy field forK>1, i.e., near mean field. In this section, . .
we present evidence that this model tends toward an ergodic F!G- 10. Inverse of the energy-fluctuation metridl1lversus
system as the interactions become long-range by using a nlpader plate update fc_Jr a 256x 256 IaFttlce with closed bouqdarles
merical test, called the energy-fluctuation mefi¢t) [15], 3.“? F_i;:.l (@ :foO)'i us'rt'ﬁ pa:]arlneteff_zSOi ;&(rfr:fof"lunlz'form
which determines if a simulated system is effectively ergodicI I?t ';' u.'(m N da:' urf bretts Odfgoz (’)i‘g o gaSGL_ p 1r°m
over an observational time scale. The quanfityt) mea- eft to right and top to bottomy=0.01, 0.15, 0. »and 2.
sures the difference between the time average and the e
semble average of a system’s energy and is defined as

Huce power-law scaling over a narrow range of velocities
centered abouV.. We emphasize that this scaling results

1 N from the coalescence of typically many initial growth sites
Q== [(t)—€et)]? (6.1  during each plate update. While we recognize that this coa-

Ni=1 lescence violates the separation of time scales inherent in
most earthquake processes, we have driven the system in this
manner in order to have a reference velodty that gives
similar “critical” behavior for different interaction ranges.
This allows us to examine the ergodicity differences for dif-

1 [t ferent interaction range®}. The top left and bottom right
€(t)= ff €(t")dt’, (6.2  plots in Fig. 11 show that for a constavitbut differentR,

0 1/Q shows a more linear increase over a longer timdRas

goes from nearest neighborsRe=4.

where the sum runs over the blocks of the system, the
running time average of blodks energye;(t) fromt’=0 to
tis

and the spatial average of the energy is

=1 0.0006

N
?(t): %E Ei(t). (6'3) 0.0008 T T 0.0007 '{'

For ergodic systems)(t)~ 1/ [15]. Consequently, plots of & 06 1000%

1/Q(t) versust increase linearly if a system is effectively 0.0004
ergodic. 0.0003
We will illustrate the effects of the loader plate velocity . . ‘ L ,
V, interaction rangeR, and spring constanKc on the O:zz:wo 200 300 400 508'°:Zjo 100 200 300 400

energy-fluctuation metric @. Figure 10 shows 1) versus
loader plate update for constaniR asV increases from 0.01 0.006 -
to 1 from top left to bottom right. Each plot uses the same
abscissa scale for ease of comparison. The top two plots d¢ € 0004 -
not depict the initial transient due to the initial conditions. As
V decreases, & becomes straighter and increases in a more
linear fashion over a longer time. 0.000 R . 0.00 . : .

Figure 11 shows T versusn for varying R. As in Fig. e A A
10, each plot uses the same abscissa scale and does not Ge-

pict the initial transient. Comparing the top right and bottom £ 11, |nverse of the energy-fluctuation metrid)1versus

two plots, observe that as the interaction range increasggader plate update using the same parameters as Fig. 10, except
from nearest neighbors =4, 14} becomes straighter and for R and V. From left to right and top to bottomR=nearest

increasingly linear over a longer time. Note that in theseneighbors and/=0.3086; R=nearest neighbors and=\V_=5.0;
plots, we are moving the loader plate at what we call ar=2 (q=24) andV=V,=1.0; andR=4 (q=80) and V=V,
“critical” velocity V., in which frequency-size plots pro- =0.3086.

0.03

0.02 -

0.002 0.01




PRE 60 SPINODALS, SCALING, AND ERGODICITY IN A . .. 1371

0.40 [T ‘ : ‘ ' ‘ contained within the high stress region, as discussed in the
preceding section, appear to leave the system in the same
0.3 1 free-energy minimum. Breakout events, which are relatively
rare in our simulations and become less frequengds
0.50 - iy increased, seem to push the system into a new minimum.
This interpretation, and its confirmation, is the subject of
W 0357 current investigation.

1/0_ (1)

VII. COARSE GRAINING REVISITED
AND ARRESTED NUCLEATION

In this section we return to the discussion of arrested
: ‘ : ‘ . A nucleation. The question we need to address is what causes
0 0.25 0.50 0.75 1.00 1.25 1.50 . . .
tine (x10% the nucleation of the high stress phase to be halted so that it
is never seen in these simulations. The answer to this ques-
FIG. 12. Inverse of the energy fluctuation metrid)lversus  tion requires that we reexamine the coarse-graining proce-
loader plate update for a 256 256 lattice with closed boundaries dure and the derivation of E¢3.6).
andR=4 (q=80), using parameters” =50, K =1, Kc=100,V As discussed in Sec. 1V, there is a coarse-graining time
=0.001, andW=0.1. which is the fundamental time unit in our coarse-grained
description. That is, the fundamental time unit in E3}6) is
In comparison to Fig. 11, using realistic fault parametershe time scale required to have the stress distribution in a
of V=0.001, which produces about one initial growth site coarse-grained volume become Gaussian. This will, as seen
per plate update, and &f-=100 andK =1, which corre- in Sec. IV, require a finite fraction of the number of blocks in
spond to strong coupling among the blocks and relativelithe coarse-grained volume to fail. This time is not constant,
weak coupling to the loader plate, Fig. 12 shows th& 1/ however, in units of plate update time. Since the coarse-
displays linear behavior over a long time. If we remove thegraining time is the basic unit of time that we are forced to
coupling among the blocks by settifgc=0, the system have once we adopt a coarse-grained description, this implies
does not exhibit ergodic behavior, as shown in Fig. 13. Herghat the unit of plate update time and, hence, the plate veloc-
the sinusoidal character of(2/[16] arises from the quasip- ity is not constant but is in fact a fluctuating variable.
eriodic movement of the blocks as the loader plate continu- Clearly, the plate update number required to fail a finite
ally drives them tos" and they relax tos®. The energy- but fixed number of blocks depends on the size of the
fluctuation results indicate that a6—0 and asR and K “earthquake” events that occurs as that fraction of blocks
increase, the CA system becomes more ergodic. This obsefails. The larger the events, the smaller the number of plate
vation, in conjunction with the previous findings demonstrat-updates, and, hence, the slower the velocity of the plate in
ing Boltzmann statistical fluctuatioi44], indicates that the units of coarse-graining time. This implies that the coarse-
long-range, slowly driven CA system tends toward an equigrained loading rate depends on the “earthquake” activity
librium system. during the coarse-grained time unit. We expect then that the
Our interpretation of this result is that the free-energyvelocity of stress loading, or the plate velocity, will be low-
surface obtained by functionally integrating E@®.6) has  ered by increased “earthquake” activity and increased by
multiple minima within the low stress phase. These minimadecreased activity. In the mean-field model, all sites fail at
correspond to different energies. Small events, which arghe failure threshold as discussed in Sec. IV. This allows us
to relate the number of failures in an event to the stress
0.0045 : [ change. With these considerations we can express the time-
dependent velocity/(7) as

Vin=v+ 2 [ gzl 7.1
0.0030 | 1 (N=V+iz | dx ar ' (7.3)
2 whereL? is the volume of the system =2, « is a positive
S ] constant, and the time derivative of,(X,7) is the rate at
0.0015 L i which stress is dissipated &tat time 7. Note that for static

considerations the time derivative vanishes and we return to
the situation discussed in Sec. IV and E8§.7). However,
when we are considering time-dependent quantities, the
JdX[ dop(X,7)/d7] term in the plate velocity will now de-
| | | | | ! pend onr. Also note that when the net rate of stress dissipa-
0 0.5 1.0 R 2.0 2.5 tion is negative, as would occur during times of large earth-
v b0l quake activity, the time-dependent velock(7) is lower

FIG. 13. Inverse of the energy-fluctuation metriddlversus than the bare velocity/, which is now the time average,
loader plate updata using the same parameters as Fig. 12, exceppver infinite time, ofV(7) in a steady state. The idea of
Kc=0. arrested nucleation is that large events are preceded by an
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increased activity in this model and this activity drives thetransfer range goes to infinity, that is, in the mean-field limit.
plate velocity down, effectively raising the nucleation bar- Another result that emerges from this work is the associa-
rier. tion of GR scaling with a spinodal, or pseudospinodal. We
There are three points that need to be made about thisave argued that the lower or smaller end of the cluster scal-
velocity modification. The first is that we can relate the timeing plots in Figs. 8 and 9 can be explained by associating
dependence of the velocity to the rate of stress dissipatiotiearthquake” events with critical phenomena fluctuations.
only in the mean-field limit where all blocks fail at the fail- However, the upper or larger end of the scaling plots have
ure threshold as discussed in Sec. IV. Second, the term  clusters that are too large to be explained by critical phenom-
ena scaling at the distance the data were taken from the spin-
odal critical point. We have explained these larger events
with the concept of arrested nucleation and provided a theo-
(7.2 retical derivation of cluster number scaling, critical slowing
down, and cluster-size scaling that are consistent with data
as can be seen from Eq&.4) and(3.6). Finally these con-  from simulations of the model. We have also discussed the
siderations predict that there should be increased activity bgnechanism that we believe is responsible for the arresting of
fore any large events that could be described as arrestafle nucleation, namely that the plate velocity is not constant
nucleation, where “before” refers to the coarse-grainingin the right time frame but must be treated as a fluctuating
time interval preceding the arrested nucleation event. Thiggariable. We have also mentioned the results of two addi-
has been seen to be correct. The data and a detailed disCygmnal tests that support this idga9]. This work, together
sion will be presented in a future publicatip29]. We have  jth the study in Ref[46], indicates that in this model there
also tested this idea by performing simulati@8] in which  are at least three separate “earthquake” orders of magnitude
the plate updates were done so that the amount of stress pwiat are generated by different mechanisms. The smallest is
into the system was proportional to the number of blocks thahssociated with critical phenomena fluctuations near the
failed after the preceding plate update. In the mean-fieldpinodal critical point. The second largest is associated with
limit, this insures that the plate velocity is a constant in unitsgrrested spinodal nucleation and the third, which is not on
of the coarse-graining time. With this form of update, thethe scaling plot(i.e., these events do not scale on a single
high stress phase was observi@8], consistent with the faylt), is associated with breakout events.

dop(X,7)

—_— \/ﬂ/wfoFdaexp{—,B[a—F(i,T)]Z},

o
aT

ideas presented in this section. Finally, these results raise several interesting questions.
Among them are the relation between the events of different
VIll. SUMMARY AND CONCLUSION sizes that we have seen and the different size events seen in

In this paper we have presented theoretical arguments ar%ge work of Carlson, Langer, and Sha#], the possible
pap pres . 9 .~_existence of additional event size scales, the possible connec-
data that support our assertion made in a previous public

. . . C%on between breakout events and the breaking of ergodicity
tion [13] that slider-block models of the type described "Nin the energy-fluctuation metric, and the relation between the

Efelfc?ﬁ[;]r ;r?;e[i]tr%z(;ytg:] ;}grL?_ﬂ?Se;g\ringggo;n lint:]r:aee“nrglrtquvems on the_ various size scales. For example, can critical
fluctuation metric studies in éec VI also support our Conclu_phenomena size events trigger a breakout event or can that
sion, based on data analy§is}| tHat the slider-block system only be done by an arreste_d nucleation event? These and
’ . . o . X other questions raised by this work are currently being pur-
can be described with equilibrium techniques in the meang 4
field limit. Also see Refs[51] and[52] for additional dis- '
cussion of this point.
The energy-fluctuation metric study in Sec. VI also shows ACKNOWLEDGMENTS
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