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Spinodals, scaling, and ergodicity in a threshold model with long-range stress transfer
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We present both theoretical and numerical analyses of a cellular automaton version of a slider-block model
or threshold model that includes long-range interactions. Theoretically we develop a coarse-grained description
in the mean-field~infinite range! limit and discuss the relevance of the metastable state, limit of stability
~spinodal!, and nucleation to the phenomenology of the model. We also simulate the model and confirm the
relevance of the theory for systems with long- but finite-range interactions. Results of particular interest
include the existence of Gutenberg-Richter-like scaling consistent with that found on real earthquake fault
systems, the association of large events with nucleation near the spinodal, and the result that such systems can
be described, in the mean-field limit, with techniques appropriate to systems in equilibrium.
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I. INTRODUCTION

It is well known that the frequency-size statistics of ear
quakes obey Gutenberg-Richter~GR! scaling relations@1#.
However, it is not known whether critical phenomena p
duce these empirical relations. To see if this connection
ists, geophysicists@2–5# and condensed-matter physicis
@6–10# have been examining models of earthquake fa
which hopefully contain the minimal, but essential, physi
In the first of these models, Burridge and Knopoff@11# ~BK!
constructed a one-dimensional network of slider blocks c
nected to their nearest neighbors and a loader plate via li
elastic springs. The BK model and other models@2–10# in-
fluenced by it can exhibit frequency-size statistics similar
GR scaling. However, until recently no theoretical analy
has demonstrated a connection between this scaling and
cal phenomena. On the contrary, after analyzing the beha
of a single BK slider block, Vasconcelos@12# argued that a
first-order phase transition occurs but that no continu
phase transition, giving rise to critical phenomena, exists
a previous paper@13#, we undertook a theoretical analys
and developed a coarse-grained description of a cellular
tomaton ~CA! long-range interaction version of the B
model based on the work of Rundle, Jackson, and Bro
~RJB! @4,5# that indicated the presence of a spinodal criti
point, which can give rise to the GR scaling observed
these models. In this paper, we report on more exten
investigations of this CA model. In addition to providing
fuller description of our coarse-grained theory and its
sumptions, we also present the results of simulations tha
consistent with this theory. In particular, we find critic
slowing down as the spinodal critical point is approach
frequency-size statistics for a wide range of realistic fa
parameters that are consistent with the values predicte
the theory, and a strong relationship between earthquake
the model and nucleation events.

*Present address: Federation of American Scientists, Washin
DC 20002.
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In addition, we have investigated further a previous res
@14# that the mean-field~infinite range interactions! version
of this model can be described by an equilibrium theory. W
find that for slow tectonic driving and long-range intera
tions, the CA model demonstrates what we call local ergo
behavior. We demonstrate this using a measure of effec
ergodicity developed by Thirumalai and Mountain@15,16#.
This result as well as the theoretical analysis gives furt
weight to the claim@13,14# that various aspects of this mod
can be described by the techniques of equilibrium statist
mechanics.

The remainder of this paper is structured as follows.
Sec. II, we briefly describe the RJB version of the BK mod
In Sec. III, we discuss the applicability of long-range inte
actions to models of earthquake faults and develop a coa
grained theory for the long-range CA model. In Sec. IV, w
discuss the assumptions made in the development of
theory and present numerical evidence supporting their
lidity. In Sec. V we review spinodal nucleation and prese
the predictions of the theory as well as the correspond
simulation results. In Sec. VI, we apply a measure of eff
tive ergodicity, the energy-fluctuation metric, to the C
model and find that the system tends toward ergodic beh
ior as the tectonic velocity approaches zero and as the in
action range increases. In Sec. VII, we discuss the arres
of nucleation events and return to the question of coa
graining. Finally, in Sec. VIII, we discuss our results.

II. MODEL

In this section we describe the model introduced
Rundle, Jackson, and Brown. This model consists of a tw
dimensional array of massless blocks that interact with th
neighbors and a tectonic loader plate via linear springs w
constantsKC and KL , respectively. Initially, each blocki
receives a random positionUi from a uniform distribution.
The loader plate contribution to the stress is set equal to z
initially, and the stresss i on each block is measured an
compared to a threshold values i

F . If s i,s i
F , then the block

is not moved. If, however,s i>s i
F , the block is moved ac-

cording to the rule
n,
1359 © 1999 The American Physical Society
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Ui~ t11!5Ui~ t !1Fs i~ t !2s i
R

K G @12h i~ t !#U„s i~ t !2s i
F
….

~2.1!

Here the step functionU(x)50 ;x<0 and 51 ;x.0,
and the effective spring constantK5KL1( j ,iÞ jTi j , where
Ti j is a matrix of interaction coefficients. The sum ovej
includes all of the neighbors of blocki. The residual stress
s i

R is a parameter that specifies the stress on a block im
diately after failure. All blocks are tested and moved until
block has a stress greater thans i

F . At this point the plate is
moved. Two procedures are used. The first, which we w
refer to as the zero velocity limit, requires that we find t
block that has the highests i . We then move the plate so tha
each block receives the stress that just brings the block
the highest stress to its failure threshold. This guarantees
in the vast majority of plate updates there will be only o
initial failure site and hence one earthquake per plate upd
The second method we will employ is to move the plate
fixed distanceVDT, thereby increasing the stresss i on each
block i by KLVDT. The quantityDT determines the ‘‘tec-
tonic’’ time scale, which is taken to beDT51 for the mo-
ment. We will return to the question of this time scale in S
VII. After the plate is moved, the stress on each block
calculated via

s i~ t !5(
j

Ti j U j~ t !1KLV(
n

U~n2t !, ~2.2!

and the process outlined above is repeated.
The step function mathematically expresses the Mo

Coulomb friction law, which has the useful property that it
always scale invariant@17#. In this paper, we use the stocha
tic CA model@14#, in whichh i(t) is a random noise equal t
rW, where r is a uniformly distributed random numbe
P@0,1# and the predetermined noise amplitudeW is in the
range 0<W<1.

After block i slips, each neighbor of the failed block re
ceives the amount of stressKC@s i(t)2s i

R#/K, while the sys-
tem dissipates the amountKL@s i(t)2s i

R#/K. This stress
transfer may cause these neighbors to slip and so on,
initiating an earthquake, or avalanche, which continues u
every block hass j,s j

F . The size of an earthquake equa
the number of slipped blocks after each plate update.
count each slip as a block failure even if a block slips m
than once. In most cases of interest in this work, multi
slips of a block during one event are rare. The count beg
anew after each update of the loader plate. It is the prope
of the earthquakes or avalanches in this model that we h
studied theoretically and via simulations.

III. LONG-RANGE INTERACTIONS AND COARSE
GRAINING OF MODEL

In this work we will concentrate on the long-range inte
action version of the CA model. We do so for the followin
reasons. Linear elasticity theory yields long-range stress
sors for a variety of geophysical applications@18#, including
idealized viscoelastic faults. For a two-dimensional dislo
tion in a three-dimensional homogeneous elastic medi
the magnitudeT of the static stress tensor goes asT;1/r 3
e-
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@19#. While geophysicists do not know the actual stress t
sors for real faults, they expect that long-range stress tens
which are similar to the 1/r 3 interaction, apply to faults. It is
suspected that microcracks in a fault, as well as other ‘‘
fects’’ such as water, screen the 1/r 3 interaction, leading to a
proposede2ar /r 3 interaction, wherea!1, implying a slow
decay to the long-range interaction over the fault’s ext
@20#.

In addition, a fault’s interaction strength varies with an
extends over a fault’s depth, which is on the order of a ki
meter or more. Because our CA slider block models a m
roscopic fault asperity, which has a linear dimension on
order of ten meters, the interaction range should span on
order of one hundred blocks in length. To approximate
account for the screening and depth effects, we can trun
the 1/r 3 interaction or any appropriate long-range interactio

In addition, recent observations@21,22# of seismic activity
following some large magnitude~*7 on the Richter scale!
events indicate long-range correlations of subsequent act
with the main quake, occurring within a few minutes aft
and extending up to 1200 km~much further than the typica
aftershock zone! from the main shock. Hillet al. @21# pro-
posed models with long-range stress tensors, including 1r 3,
to explain these spatial correlations.

In nature, the average earthquake stress dropDs is ap-
proximately 0.01–1 MPa, which is small compared to t
failure threshold (sF'10 MPa) or the breaking strength o
rock @23#. Consequently, the ratioDs/sF'0.001– 0.1. For a
fixed sF in the long-range CA model,Ds decreases as th
interaction range increases because the mean intera
strength or interblock spring constant decreases as the i
action range increases@24#. To obtain a consistent ratio
Ds/sF with geological faults, the CA model’s interactio
region must include several hundred blocks.

Finally, in addition to questions of interest in earthqua
physics, we want to investigate mean-field effects in driv
dissipative systems which appear as the CA model beco
more long-range. In particular, our coarse-grained the
~developed below! indicates that a spinodal critical point in
fluences earthquake scaling, the structure of an earthqu
and the amount of time required to form an earthquake d
ing a tectonic plate update. In addition, earlier simulatio
@14# and theoretical analysis@13# indicate that these system
are locally ergodic in the limit of infinite interaction range
The concept of local ergodicity will be addressed in Sec.
We know that long-range systems@25–27,14# can display
different physics than short-range systems. This model,
to the fact that it is driven and dissipative, is a particula
interesting one on which to study this phenomenon. We
gin with the theoretical analysis.

In Ref. @13#, we derived a coarse-grained theory for t
CA model. In this paper, we present a more detailed desc
tion of this theory. We begin by rewriting Eqs.~2.2! and
~2.1! to eliminate the position variableU j (t) and to develop
a stress evolution equation. Multiply Eq.~2.1! by Ti j , sum
over j, and use Eq.~2.2! to obtain

s i~ t11!2s i~ t !5
1

K (
j

Ti j @s j~ t !2s j
R#U@s j~ t !2s j

F#

1h j8~ t !1KLV, ~3.1!
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where the noiseh j8(t)5( jTi j @s j (t)2s j
F#h j (t) remains spa-

tially random as long asTi j is a radially symmetric interac
tion, which it is assumed to be. Equation~3.1! gives the new
stress on blocki at time t11 in terms of the previous
stresses from blocki, the neighboringj blocks, the loader
plate, and the noise. We have assumed that blocks fail
once per plate update, which will be discussed later in
section and in Sec. IV.

The KLV term was obtained by assuming that the str
loading at timet11 in Eq. ~2.2!, i.e.,

KLV(
n

U~n2t21!, ~3.2!

minus the stress loading at timet was simply the difference
between the two sums att11 andt. This point will require a
much more careful discussion, and we will return to it in S
VII.

For long-range interactions, the number of neighborsq
@1. Each block at lattice sitei interacts via springs with al
blocks at lattice sitesj contained within a square interactio
region with area (2R11)2 so that q5(2R11)221. We

consider two stress Green’s functions:~i! Ti j ;KC /u ıW2 jWu3,
which is truncated at an interaction rangeR ~an infrared cut-

off!, whereu ıW2 jWu is the lattice distance between cellsi andj,
~ii ! Ti j 50 for u i 2 j u.R, wherei andj in u i 2 j u are thex and

y components ofıW and jW, andTi j 5KC /q for u i 2 j u<R and
50 otherwise. Note that these Green’s functions are sim
in that both weaken the nearest-neighbor interactionKC . We
also assume a short-range~ultraviolet! cutoff in Ti j , which
arises due to the natural short-range cutoff of geological
condensed matter systems, so thatTi j <A,` ; i and j. The
limit q˜` produces mean-field behavior, which is qualit
tively different from the nearest-neighborq54 model. For
both choices of the Green’s function the interaction ran
scales withq asR;q1/2.

The only physics of interest in our CA model is on leng
scales greater thanR. By developing a coarse-grained d
scription@28# of Eq. ~3.1!, with a coarse-graining size ofR2,
we can sum over fluctuations on length scales smaller thaR
and retain the physics at larger length scales. We proc
therefore, from a microscopic description of the stresses
the individual blocks to a macroscopic description of t
stresses on a coarse-grained block in which the stresse
come continuous classical variables or fields. In the rem
der of this paper, we will assume thats i

F ands i
R are spatial

constantssF andsR.
To accomplish the coarse graining, we define a coa

grained cell with a volumeq centered at blocki and specify
a coarse-grained timet, and we average the stress over bo
the coarse-grained volume and time. Therefore,s i(t) be-
comess̄ i(t) on the left-hand side of Eq.~3.1!, where the bar
denotes coarse-grained average.

On the right-hand side of Eq.~3.1!, we convert the sum-
mation over the individualj blocks covering a large regio
into a summation between interacting coarse-grained blo
restricted to local interactions. Because the first term in
~3.1! is written as a discrete convolution, we can use Four
transform techniques to convert Eq.~3.1! into a coarse-
grained form. First, expand the Fourier transform ofTi j in a
ly
is
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power series using the transform variableukW u5k. Note that
with the short- and long-distance cutoffs, we have a boun
function on a finite support and hence are assured that
power series ink exists. Second, we truncate the power ser
at k2 in order to express the stress tensor as a local inte
tion between coarse-grained blocks and invert the Fou
transform to obtain for the first term in Eq.~3.1!,

(
j

Ti j @s j~ t !2sR#U@s j~ t !2sF#

;2qKC(
j

D i j @s j~ t !2sR#U@s j~ t !2sF#

2KL@s i~ t !2sR#U@s i~ t !2sF#, ~3.3!

where2KL andqKC are the zeroth and second moments
Ti j , respectively,D i j is the matrix~discrete! representation
of the Laplacian, and the sum preceding the Laplacian
over the coarse-grained blocks with a length scale set by
coarse-graining scaleq1/2.

Next, we convert the discrete summation in Eq.~3.3! into
a continuous integral. This step transformss j into a continu-
ous variable. To carry out this step, notice that the step fu
tion in Eq. ~3.3! specifies that only blocks whose stre
equals or exceedssF will fail in a coarse-grained time inter
val t and thus contribute to the summation. Consequen
we can compute the partial sum of only those blocks that
within t.

Before we compute the partial sum, we consider w
happens to the time-averaged stress on a block due to
interblockKC springs in the mean-field limit. From symme
try, this stress becomes very small asq˜`. We also nu-
merically verified this condition by measuring the me
stress on the blocks and comparing it to the mean st
solely due to the loader plate. Recall that the loader p
stress equalsKL times the mean distance between the act
positions of the blocks and the positions where the loa
plate exerts zero force on the blocks. Within a coar
graining time asq increases, the mean stress on the blo
approaches the mean loader plate stress on the blocks. U
standard mean-field arguments@27#, it is expected that the
stress fluctuations away from the mean value approach
asq21/2.

The above discussion implies that the blocks are wea
interacting with each other in the mean-field limit. Thu
from the central limit theorem, within a coarse-grained v
ume on a time scale shorter than the coarse-grained timt,
the blocks’ stress distribution will equilibrate to a Gaussi
centered abouts̄(xW ,t), where xW labels the coarse-graine
volume. In the next section, we discuss the numerical e
dence that the stress distribution equilibrates to a Gaus
on time scales less thant.

Also, within the coarse-grained time, only blocks wi
stress lying betweens0 and sF will fail, where 0,s0
,sF, because the loader plate will add only enough stres
bring blocks with stresss0 or greater to failure. Heres0 is a
parameter to be determined later. The above considerat
lead to the following Gaussian representation of the par
sum:
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1

q (
j

8@s j~ t !2sR#U@s j~ t !2sF#

5~sF2sR!Ab/pE
s0

sF

ds exp$2b@s2s̄~xW ,t!#2%,

~3.4!

where the prime on the summation means that the sum
cludes only the blocks that fail inside the coarse-grained v
ume in a coarse-grained time. The factorsF2sR arises from
the fact that if allq blocks failed, then the left-hand side o
Eq. ~3.4! is exactlysF2sR in the b˜` limit.

In developing this Gaussian approximation, we assu
that a block fails at most once during a coarse-grain timet.
These assumptions are correct in theq˜` limit for V,Vc
5(sF2sR)/K, as demonstrated in the next section. The
locity Vc is a good approximation to the spinodal value f
the ranges ofb we investigate in this work. Beyond thi
value of the velocity, the low stress phase is unstable
detailed discussion of this last point will be presented in
future publication@29#. In this work we will restrict our-
selves to a discussion of the low stress phase. However
will return to this point in Sec. VII. In Eq.~3.4!, b specifies
the level of noise in the system and plays the role of
inverse temperature so thatb@1 implies low noise compared
to b!1 for high noise. The quantityb also determines the
width of the Gaussian and the weight assigned to the ‘‘
tropy’’ term, developed below. Because ofb’s dual roles, we
assume that the Gaussian and ‘‘entropy’’ terms have
same noise dependence@30#. The quantityAb/p approxi-
mates the normalization forb@1, which follows because a
largeb produces a narrow Gaussian distribution and allo
sF to be replaced by infinity in the upper integration lim
causing negligible error in the normalization. In this work w
always assumeb@1 since small amplitude noise is what
expected on earthquake faults.

Finally, we derive an ‘‘entropy’’ term that counts th
number of waysN„s̄(xW ,t)… to distribute the available stres
qs̄(xW ,t) among theq blocks within a coarse-grained vo
ume, where the stress values range fromsR to sF. Over the
coarse-graining time, the stress inside a coarse-grained
ume will tend to cluster around the mean value of this str
range, i.e.,s̄5(sF1sR)/2. The entropy equals minus th
logarithm of the distributionN„s̄(xW ,t)…. For nonequilibrium
thermodynamical systems near equilibrium, where the lo
range CA model is such a system@14#, the system’s entropy
can be expressed as the potential of a generalized force~see,
e.g., Ref.@31#!, which gives the following term:

dS„s̄~xW ,t!…

ds̄~xW ,t!
52

d ln N„s̄~xW ,t!…

ds̄~xW ,t!
5

b21

sF2sR lnF s̄~xW ,t!2sR

sF2s̄~xW ,t!G
2

b21

sF2sR E
sR

sF

ds lnFs2sR

sF2sG
3exp$2b@s2s̄~xW ,t!#2% ~3.5!

for the s̄(xW ,t) equation of motion.
To obtain the coarse-grained equation of motion, we co

bine Eqs.~3.1!, ~3.3!, ~3.4!, and~3.5!, take the temporal and
spatial continuum limits, and obtain
n-
l-

e

-

A
a

e

n

-

e

s

ol-
s

-

-

]s̄~xW ,t!

]t
5KLV1h̄~xW ,t!1

@qKC¹22KL#

K

~sF2sR!

2

3$erf2Ab@sF2s̄~xW ,t!#%

2erf$Ab@s02s̄~xW ,t!#%2
b21

sF2sR

3S lnF s̄~xW ,t!2sR

sF2s̄~xW ,t!G2Fb

p G2E
sR

sF

ds lnFs2sR

sF2sG
3exp$2b@s2s̄~xW ,t!#2% D , ~3.6!

where erf(z) is the error function, which came from th
Gaussian in Eq.~3.4!, and h̄(xW ,t) is the coarse-grained
noise. We can obtain the equation for the time-independ
spatially homogeneous solutions to Eq.~3.6! by setting the
noise and the derivatives to zero to obtain

KLV5
KL

K

~sF2sR!

2

3$erf@Ab~sF2s̄ !#2erf@Ab~s02s̄ !#%

1
b21

sF2sR S lnF s̄2sR

sF2s̄ G2Fb

pG1/2

3E
sR

sF

ds lnFs2sR

sF2s Gexp@2b~s2s̄ !2# D .

~3.7!

The right-hand side of Eq.~3.7! represents the rate of stres
dissipation over the coarse-grained time and system volu
and the left-hand side of Eq.~3.7! equals the rate of stres
input into the system.

The initial conditions specify all the parameters exce
s0 . We can determines0 by considering theq˜` limit in
which blocks within the interaction range are essentia
noninteracting. This noninteracting effect occurs becaus
every block interacts with all other blocks, there can be
spatial scale for fluctuations so that the interactions can
combined into an effective or mean field. By assuming t
every block interacts with all other blocks, we can still ca
culate mean-field thermodynamics@28#, and we have that the
spatial and temporal average ofs̄(xW ,t) must be s̄5(sF

1sR)/2. Substitutings̄ into Eq. ~3.7! and noting that the
‘‘entropy’’ term equals zero for thiss̄, we get the following
equation:

sF2sR

2K H erfFAb
sF2sR

2 G2erfFAbS s02
sF1sR

2 D G J 5V,

~3.8!

which we can solve fors0 .
Now that we have derived the coarse-grained equat

we can obtain the physics of the CA model after specify
the four parametersb, K/KL , VKL , and (sF2sR)/K,
which determine the behavior of the equation and the mo
Using the values of these parameters representative of t
for real earthquake faults, such thatDs/sF'0.001– 0.1 and
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V;0, we numerically solve the time-independent spatia
homogeneous equation~3.7! to illustrate some important as
pects of the theory. As noted in Sec. II, a typical CA slid
block dissipates an amount of stressDs5(KL /K)(sF

2sR). We choose values ofKL , K, sF, andsR that give
Ds/sF values consistent with real faults. In Fig. 1,KL51,
K5100, sF550, and sR510 so thatDs/sF5831023,
and in Fig. 2 we increaseK to 1000 so thatDs/sF5
831024. For both figures, we useb55, assuming that noise
does not strongly influence the fault, and we setV50.005 to
slowly drive the system. To obtain these curves, we a
need to computes0 , which we numerically calculated from
Eq. ~3.8!. In Figs. 1 and 2, the solid curve comes from t
right-hand side of Eq.~3.7! and equal the mean rate of stre
dissipation, while the dashed straight line comes from
left-hand side of Eq.~3.7! and equals the mean rate of stre
input. Therefore, the intersection of the two curves de

FIG. 1. Solution to the time-independent spatially homogene
Eq. ~3.7!, using parametersK5100, sF550, sR510, b55, and
V50.005. The solid line represents the rate of stress dissipa
from the right-hand side of Eq.~3.7!, and the dashed line represen
the rate of stress input from the left-hand side of Eq.~3.7!.

FIG. 2. Solution to the time-independent spatially homogene
Eq. ~3.7!, using the same parameters as Fig. 1, exceptK51000.
The solid line represents the rate of stress dissipation from the r
hand side of Eq.~3.7!, and the dashed line represents the rate
stress input from the left-hand side of Eq.~3.7!.
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r
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r-

mines the spatially and temporally averaged stresss̄ at
which the rates of stress dissipation and input balance e
other.

Analyzing the solutions of Eq.~3.6!, we make the follow-
ing observations. In Figs. 1 and 2, the intersection of
horizontal line representing the mean velocityV and the
curve representing the right-hand side of Eq.~3.6! occurs in
the low stress regime. In simulations of the CA model w
approximately the same parameters,s̄ is approximately
equal to the values in these figures obtained from the coa
grained equation~3.8! Because the steady-state solutions
Figs. 1 and 2 come from a mean-field theory, we do
expect these solutions to agree exactly with the simulatio
which are limited to finite, but long-range, interactions. Wh
happens if eitherDs is decreased orV or is increased, or
both? The curves would then intersect at two additional po
tive values nears̄550. Although both of these intersectio
points belong to high stress regimes, the left intersect
~lower stress! is unstable, and the right one~higher stress! is
metastable. In stress space, a very small distance sepa
these metastable and unstable states. Observe also in th
ures that the well depth decreases asK increases, thus de
creasing the range of driving velocities over which the s
tem can explore the higher stress states. For even hi
values ofV, the high stress phase is stable while the lo
stress phase is metastable. IfV is set higher still, the low
stress phase ceases to exist.

Even though the top of the rate of stress dissipation cu
appears flat, it is slightly curved with a curvature that d
pends onb. For smallerb, the top becomes more curved.
contrast, for largerb, the curve steepens and approache
step function, and the well becomes deeper and tends tow
the half-way point between the top and bottom of the cur
As discussed in Ref.@13#, the top of the curve and the bo
tom of the well delineate spinodal critical points, whic
separate metastable and unstable states. By increasingK, we
can bring the spinodal critical points closer to the rate
stress input line. Consequently, as the intersection p
nears the spinodal critical points, the system is more likely
experience critical behavior such as scaling induced by th
spinodal. In Sec. V, we present simulation results that de
onstrate the effects of the spinodal.

IV. COARSE-GRAINING ASSUMPTIONS

In this section, we present simulation results relevant
clarifying the coarse-graining assumptions used in the p
ceding section. The three assumptions we examine ar
follows. ~i! The number of times a block fails per coar
graining time is one.~ii ! The stress at which the blocks fail i
sF and not greater.~iii ! The time-averaged stress distributio
within a coarse-grained volume is a Gaussian. These
sumptions are all made in the mean-field (q˜`) limit.

The assumption that a block should fail no more th
once during a plate update asq˜` for V,(sF2sR)/K ~the
spinodal velocity! is tested in Fig. 3. We show a log-log plo
of the number of multiple failures normalized by the tot
number of failures. Since the value ofK used in the simula-
tions is large, we test the assumption forV;0 to satisfyV
,Vc . The data show that this ratio decreases asq22. Con-
sequently, the simulation results validate the assumption
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the multiple failures can be ignored asq becomes large.
We also assumed that a block’s stress before failure d

not exceedsF in the q˜` limit for V,(sF2sR)/K. Fig-
ure 4 shows that asq becomes large, the time-averaged va
of the failure stress that exceedssF decreases almost linearl
with q. Thus, the simulations again validate the assumpt
Note that for the first two assumptions tested with d
shown in Figs. 3 and 4, we used a very large value ofKC
5200. Because this value typically produces a great num
of multiple failures and high values of failure stress relat
to sF for small q, these data signify a stringent test of th
assumptions.

Next we present evidence that the stress within a coa
grained volume becomes Gaussian distributed within a s
time scale compared to the time required for all the blo
within that volume to fail. Figure 5 shows binned tempora
averaged stress within a coarse-grained volume of
2563256. The sequence of plots depicts the evolution of t
time-averaged stress from'20% to 100% of the blocks fail-
ing ~the caption shows the exact percentages!. Before com-
puting the temporal average of each block’s stress,
blocks failed several times each to allow the system to m

FIG. 3. The number of multiple failures normalized by the to
number of failures versusq, where the number of plate updatesn
535 000, using parametersKL51, KC5200, sF550, V;0,
2563256 system size,W50.3, and theKC /q interaction.

FIG. 4. Time-averaged excess stress normalized bysF versusq,
using the same system parameters as Fig. 3.
es
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away from the transient state due to the initial conditio
Notice that after about'20% failures, the stress distributio
clearly deviates from a flat distribution, which is the dist
bution after a single plate update. After'40% failures, the
stress distribution appears Gaussian distributed, and it
comes more so as more failures occur. The solid curve
Fig. 5 come from Gaussian fits to the data, where the res
are listed in Table I. To compute these fits, we used
Levenberg-Marquardt method of nonlinear fitting@32#. In
Table I, observe that the amplitudeA increases while the
meanx̄ and the standard deviations decrease as the stres
distributions evolve. Thes and x̃2 decrease means that th
fits are becoming narrower and closer to a Gaussian di
bution. The meanx̄ approaches the value predicted by t
steady-state solution to the mean-field theory. These
show that the stress distribution equilibrates to a Gaussia
a time scale shorter than the time required for all blocks
fail.

V. THEORETICAL PREDICTIONS
AND SIMULATION RESULTS

In this section, we develop scaling relations relevant
the long-range CA model and present simulation results
are consistent with these relations. Our basic premise is
the scaling relations that are seen in the model are cause
the spinodal critical point. However, unlike most attempts
associate the scaling of the earthquake events in slider b
or avalanche models with critical fluctuations@7–9#, we as-
sociate the large earthquake events with arrested spin
nucleation droplets and the small events with critical ph

l

FIG. 5. Histograms of the time-averaged stress in a coa
grained volume containing 2563256 blocks with bin size equal to
0.02 in units of stress, showing the temporal evolution of the str
in the system, where the earliest to latest times go from left to ri
and top to bottom. These plots correspond to an increasing num
of cumulative failures in terms of the percentage of the total num
of blocks that have failed, where the percentages are 20.4, 3
43.2, 55.5, 65.3, 76.8, 86.3, 95.6, and 105.8. The data were
lected only after each block had failed several times. The bin
simulation data are represented by circles, while the solid curve
Gaussian fit to the data. The other system parameters aresF550,
KL51, V;0, W50.3, andKC51.
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TABLE I. Gaussian fit parameters corresponding to the curves in Fig. 5, where the fitting formy
5A exp$2@(x2x̄)/s#2%. The two leftmost columns contain the percentage of the number of failed bl
compared to the total number of blocks in the coarse-grained volume and the cumulative number of
that determined the ‘‘% failure’’ column. The rightmost column lists the reducedx2 of the fit.

% failure Slips A(31023) x̄ s x̃2(31025)

20.4 13,349 0.67860.007 31.52660.233 20.45560.479 2.747
33.0 21,624 0.76860.007 31.27160.171 17.18160.334 2.712
43.2 28,281 0.89460.008 30.90960.118 13.82660.215 2.295
55.5 36,357 1.01460.008 30.57360.089 11.86760.160 2.116
65.3 42,795 1.14760.008 30.37360.069 10.31360.121 2.163
76.8 50,355 1.27260.008 30.22560.055 9.21060.097 2.013
86.3 56,557 1.37560.008 30.06360.047 8.48560.083 1.788
95.6 62,673 1.44060.008 29.91160.043 8.09460.075 1.529

105.8 69,365 1.47360.008 29.82660.041 7.92060.072 1.377
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nomena fluctuations. We will return to this point at the e
of this section. In order to explain our point, we will briefl
review the spinodal nucleation idea and explain the conc
of arrested nucleation, which we will return to in Sec. VII

Spinodal nucleation is concerned with nucleation near
spinodal critical point in systems with long-range~but not
infinite! interactions@33#. The reason that long range is e
sential is that spinodal effects are not seen in models w
short-range interactions, as will be seen below. However
a practical matter, in models with long-range interactio
such as the CA model we are considering, spinodal nu
ation is the dominant event. The classical events will
strongly suppressed, as we will see below@34#.

We begin our discussion of spinodal nucleation with t
partition function. This would be the functional integral
the right-hand side of Eq.~3.6!. To simplify the discussion
we will use a simple ‘‘f4’’ theory. Since we are only inter-
ested in the scaling dependence of various physical qua
ties, this model will suffice. The partition functionz is

z5E df expF2bE dxW S R2

2
„¹f~xW !…21ef2~xW !

1f4~xW !2hf~xW ! D G . ~5.1!

Heree is T2Tc , Tc is the critical temperature, andh can be
thought of as an applied magnetic field or a chemical pot
tial. We can scale all lengths with the interaction rangeR and
in the R@1 limit obtain the free energy per unit volume,f,
from a saddle-point evaluation of Eq.~5.1!. Using the rela-
tion @35#

]f~xW ,t !

]t
52M

d f ~f!

df
, ~5.2!

we define the Langevin dynamics for this system. HereM is
a mobility which we will take to be a constant and we no
assume a time dependence forf(xW ,t) given by the Langevin
equation~5.2!. One could add a noise to the right-hand si
of Eq. ~5.2!, but it will be irrelevant for our considerations
From Eqs.~5.1! and~5.2!, and scaling all lengths withR, we
obtain
pt

e

th
as
,

e-
e

ti-

-

]f~xW ,t !

]t
52MRd@2¹2f~xW ,t !22ueuf~xW ,t !

14f3~xW ,t !2h#, ~5.3!

where we have takenT,Tc . The equilibrium values of the
order parameterf(xW ,t) can be obtained from Eq.~5.3! by
setting all derivatives equal to zero and assuming a solu
that is a temporal and spatial constant. The free energy
unit volumef is then

f 52ueuf21f42hf. ~5.4!

The minima of the free energy corresponding to phases
then the solutions to

22ueuf14f32h50. ~5.5!

As is easily seen fore,0, there are two minima. Forh.0,
the f.0 minimum has a lower free energy per unit volum
f than the one withf,0 and represents the stable phase. T
minimum with negative value off represents the metastab
phase and has a higher value of the free energy. Ash is
increased, the metastable minimum becomes shallower,
finally at h5hs the metastable minimum disappears. Th
value ofh is referred to as the spinodal value of the field a
f5fs , the value of the metastable minimum whenh5hs ,
is the spinodal value of the order parameterf. We are inter-
ested in the mechanism of nucleation out of the metasta
well for Dh5h2hs!1, R@1, e,0 and fixed, and hence
f;fs . This problem has been addressed both theoretic
@34,36,37# and via simulations@25,38–40#.

The initial step in the theoretical treatment is to find t
spinodal values off andh (fs andhs). These values mark
the place where the metastable well vanishes. Hence,fs and
hs must be solutions of Eq.~5.5!, and

22ueu112f250, ~5.6!

sincefs is an inflection point. We now define a new fie
c(xW ,t)5f(xW ,t)2fs and rewrite Eq.~5.3!,
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]c~xW ,t !

]t
52MRdF2¹2c~xW ,t !212S ueu

6 D 1/2

c2~xW ,t !

14c3~xW ,t !1DhG , ~5.7!

where we have used Eqs.~5.5! and~5.6! and the fact thatfs
is a solution of Eq.~5.5! whenh5hs . We now assume, an
will demonstrate below, thatc(xW ,t)!1 so that we can ig-
norec3(xW ,t) relative toc2(xW ,t). We stress thatueu.0 and
does not approach zero. It isDh that approaches zero as w
approach the spinodal in this analysis. The fundame
equation for nucleation near the spinodal is then

]c~xW ,t !

]t
52MRd@2¹2c~xW ,t !1Dh2Cc2~xW ,t !#,

~5.8!

where we have setC512ueu1/2/61/2.
The nucleation or critical droplet is assumed to be

equilibrium fluctuation~@see @34,35,41–43#! and therefore
should be a solution to the time-independent form of E
~5.8!,

2¹2c~xW !1Dh2Cc2~xW !50. ~5.9!

To understand how the droplet scales, we do not have
solve Eq.~5.9!. We need only note that

c~xW !;~Dh!1/2c̄„xW~Dh!1/4
…, ~5.10!

wherec̄„xW (Dh)1/4
… is of order 1 and a solution to

2¹2c̄~xW !112Cc̄2~xW !50. ~5.11!

In order to see that this is indeed a critical droplet, we c
specialize to one dimension (d51) @37#. In one dimension,
Eq. ~5.9! reduces to

2
d2c~x!

dx2 1Dh2Cc2~x!50. ~5.12!

There are two boundary conditions required by the eq
tion and those are fixed by physical considerations associ
with the idea of an isolated droplet. First, asx˜` we expect
c(x) to approach its value in the metastable state,cms. This
can easily be seen from Eq.~5.7!, once all derivatives are se
equal to zero, to becms52@Dh/C#1/2. The second boundar
condition is that the droplet should be smooth so that
expectdc(x)/dx50 at x50. With these conditions, the so
lution of Eq. ~5.12! is

c~x!52S Dh

C D 1/2

13S Dh

C D 1/2 1

cosh2S C1/4Dh1/4

&
xD ,

~5.13!

which has all of the scaling properties derived above.
We now test the stability of this solution to Eq.~5.12! by

performing a linear stability analysis. We insert

c~x,t !5c~x!1h~x,t !, ~5.14!
al

n
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wherec(x) is given in Eq.~5.13!, into

]c~x,t !

]t
52MRdS 2

]2c~x,t !

]x2 1Dh2Cc2~x,t ! D
~5.15!

and linearize with respect toh(x,t), which is assumed to be
a small perturbation. We obtain

]h~x,t !

]t
52MRdH 2

]2h~x,t !

]x2

12CF S Dh

C D 1/2

23S Dh

C D 1/2

3
1

cosh2S C1/4Dh1/4

&
xD Gh~x,t !J . ~5.16!

This equation has solutions of the formh(x,t)
5e2l i xh i(x), where thel i are the eigenvalues associat
with the eigenvectorsh i(x) of the operator

l ih i~x!52MRdH 2
d2h i~x!

dx2

12CF S Dh

C D 1/2

23S Dh

C D 1/2

3
1

cosh2S C1/4Dh1/4

&
xD Gh i~x!J . ~5.17!

Equation ~5.17! has the form of a time-independen
Schrödinger equation with a shallow~since Dh!1) well.
One expects that there will be both positive and nega
eigenvalues corresponding to bound and free states. Th
indeed the case. One can show@34,37# that there is one nega
tive eigenvalue and a continuum of positive eigenvalues. T
eigenvector with negative eigenvalue,ho(x), is then un-
stable since its amplitude grows exponentially with tim
One can easily see@34# that the eigenvector with negativ
eigenvalue has the form

ho~x!;
1

cosh3S C1/4Dh1/4

&
xD . ~5.18!

It is also easy to see that the negative eigenvalue2l0 ,
wherelo.0, scales asDh1/2. This implies that the drople
whose profilec(x) is given in Eq.~5.13! is a saddle-point
solution to Eq.~5.12! and that the system can move aw
from the metastable state via the growth of this saddle-p
droplet. Moreover, the scaling oflo with Dh1/2 implies that
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the growth of the droplet slows asDh˜0. That is, the char-
acteristic growth timetg scales asDh21/2. Before discussing
the simulation test of this prediction, there are other qua
ties that we can predict from the theoretical treatment of
CA model which can also be tested via simulation. In ord
to obtain these predictions, it is necessary to go a bit dee
into nucleation theory.

As stated above, one of the main assumptions of nu
ation theory is that the critical, or nucleating, droplet can
viewed as an equilibrium fluctuation@43#. This implies from
Eqs.~5.1! and~5.7! that the probability of a critical droplet is
proportional to the partition function evaluated at the sadd
point solution associated with the critical droplet@34,43#.
The proportionality factor, or prefactor, comes in two pa
@35,44#. The static part is given by the Gaussian integ
associated with the steepest-descent part of the saddle-
evaluation of the partition function@34,35,43#. The form of
the static part to the prefactor isj2d;R2dDhd/4.

The kinetic part of the prefactor depends on the form
the dynamics driving the system. In particular, it depends
the conservation laws and how conserved quantities co
to the variablec(x). In the Langevin dynamics we are dis
cussing in this section, as well as in the dynamics for
earthquake model, the kinetic prefactor scales asDh1/2 @34#.

Combining these factors, we obtain the probability p
unit time of a critical or nucleating dropletPn(Dh) to be

Pn~Dh!5
ADh1/2exp@2BbRdDh3/22d/4#

jd . ~5.19!

The constantsA and B are independent@37# of Dh and are
not relevant to our discussion. The factorDh21/2 sets the
time scale. Since the droplets are assumed to be indepen
of each other, thenPn(Dh) is proportional to the number o
droplets per unit volume. From Eq.~5.19! it can be seen tha
for a fixedDh, Pn(Dh) is exponentially damped inR. In the
mean-field limit, R˜`, nucleation is completely sup
pressed. However, for fixedR, which is more in line with
simulations, the exponential part ofPn(Dh), usually known
as the nucleation barrier, can be made smaller by decrea
Dh. Due to the exponential dependence onDh, the probabil-
ity of a critical droplet remains quite small until the arg
ment of the exponential becomes of order 2–3. This is u
ally referred to in the literature as the Becker-Do¨ring limit or
limit of metastability @40#. Nucleation will occur from the
metastable state on some time scale no matter what the
of the nucleation barrier. For practical purposes, however
simulations such as the ones we are performing, nuclea
will occur only in the vicinity of the Becker-Do¨ring limit
where the time scales become attainable. For this discus
we do not need to know the precise value of this limit. W
only need to note that the condition that nucleation oc
only in the neighborhood of this limit implies that

RdDh2d/45jd5DDh23/2, ~5.20!

whereD is a constant independent ofDh.
We are now in a position to derive one of the three scal

relations we have tested with simulations on the CA mod
The first is a scaling relation between the mean equilibra
time tequil and K. The equilibration time is defined as th
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number of time steps required for the system to relax afte
plate update. Taking the time average of each equilibra
time over all plate updates determines the mean equilibra
time, which is the mean time to form an earthquake. O
prediction is that this equilibration time will scale with th
correlation length in analogy with the ‘‘f4’’ model. To ob-
tain this scaling in variables appropriate to the CA model,
note that from Eqs.~3.6! and ~3.7!, K behaves as a field
similar to the external magnetic field in thef4 model dis-
cussed above. That is, varyingK either brings the system
closer to the spinodal~increasingK! or moves it further
away. The location of the spinodal forV;0 will be K21

;0. The correlation length, or mean radius of gyration,
the earthquake clusters will scale as

j;K1/4, ~5.21!

in analogy toj;Dh21/4 in thef4 model. Direct comparison
of Eq. ~3.5! with Eq. ~5.8! leads to the conclusion that th
characteristic, or growth, time

tg;j2;K1/2. ~5.22!

This relation means that asK increases and brings the syste
closer to the spinodal, the mean time to form an earthqu
increases, corresponding to critical slowing down as
served in condensed-matter systems near critical points.
ure 6 shows that for largeq51088 ~circles!, but much
smaller than the system size,tg follows a power-law form of
tg;K0.3560.1. However, as the interaction region includ
more blocksq'10 000~diamonds!, or becomes more mea
field, the data points approach the predicted mean-field re
given in Eq.~5.22!.

A very interesting and important aspect of these d
which not only impacts on our understanding of this class
models, but also has implications for understanding spino
nucleation in condensed-matter systems, is the large valu
q required to see the critical slowing down predicted by t

FIG. 6. Log-log plot of the mean equilibration time to form
cluster per plate update versus the effective spring constantK. The
circles are for a 2563256 system withV;0, sF550, KL51, W
50.3, andq51088 using theKC /q interaction. The diamonds ar
for a 1283128 system withV;0, sF550610 ~random uniform
distribution of failure thresholds!, sR50, KL51, and q'10 000
using the 1/r 3 truncated interaction. The straight line has a slope
1
2, the predicted mean-field exponent.
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mean-field theory. Large values ofq allow the spinodal to be
more closely approached by raising the nucleation bar
@see Eq. ~5.19!# and hence decreasing the value ofDh
needed to reach the Becker-Do¨ring limit.

In order to derive the next two scaling relations, we ne
to introduce the idea of arrested nucleation. We begin
noting from Eq.~3.7! that the low velocity phase is a low
stress phase. As the system is brought closer to the spin
by raising the velocity or the coupling constantK, the low
stress phase becomes metastable and the high stress
becomes stable. One would expect then that nuclea
would take the system from the low stress metastable ph
into the high stress stable phase. However, the high st
phase is not seen in the simulations performed in this wo
Our hypothesis is that the nucleation process is stopped
arrested. We will discuss the mechanism responsible
stopping the nucleation events in Sec. VII. In this section
will pursue the consequences of this idea.

Our working hypothesis is that large stress saddle-p
objects occur as in the theory outlined above. These obj
are stopped or arrested and decay. The release of the s
from the high stress region during the decay is the ea
quake. We have found these high stress regions in sim
tions, and those data will be presented in a future publica
@29#.

Since the earthquake is associated with the releas
stress, the number of failed blocks should be proportiona
the number of high stress blocks. That is, we are claim
that the high stress region defines the region of the ea
quake in this model as it is presently simulated and that
Gutenberg-Richter scaling, as well as other scaling laws,
be obtained from understanding the statistical distribution
the high stress regions.

This raises the question as to why we believe that the o
blocks that fail in the earthquake are those originally in
high stress region. First, that is essentially what the sim
tions show in this work and in other versions of the mod
we have studied@29#. The number of breakout events is
small fraction of the total number and that fraction decrea
as we increaseq. In addition, the time scale between brea
out events and the time scale over which the fluctuation m
ric analysis indicates that the system is ergodic are of
same order@45#.

Second, we have done an analysis of what conditi
would favor such a containment and what would favor br
kout from the high stress region resulting in a characteri
event in which approximately all blocks in the system f
@46#. That study indicated that the stress profile in the mod
as it is run in these studies, is too rough for a signific
number of breakout events to occur and that the statis
will be dominated by scaling events that are contained wit
the original high stress region. The stress profile is define
the field sF2s̄(xW ,t). By rough we mean a surface define
by the stress profile ind52 with a fractal dimension greate
than 2.5.

With these considerations the mean mass of the clustes̄
will scale as the mean mass of the nucleation or critical dr
let. From Eqs.~5.10! and ~5.13!, the density of the critical
droplet scales asDh1/2 and its volume asjd. This implies
that the mass of the critical droplets̄ scales as
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s̄;jdDh1/2. ~5.23!

From the condition that nucleation take place near
Becker-Döring limit and Eq.~5.20!, we have

s̄;Dh21. ~5.24!

As in the above discussion, we can express this relation
terms ofK. That is,K;Dh21 so thats̄;K. The data in Fig.
7 are clearly consistent with this prediction.

Finally, in this section we derive the exponent for clus
scaling. Since critical slowing down is only cleanly attai
able for extremely largeq, we will remove it from the cal-
culation of nucleation rates by measuring the number of c
ters of sizes, nc(s), normalized by the total number o
clusters. This takes the time element out of the calculat
We expect then that the number of critical droplets ove
time scale proportional toDh21/2 is proportional toj2d,
where we have used Eq.~5.19! multiplied by the time~pro-
portional toDh21/2) and assumed, as usual, thatRdDh3/22d/4

is a constant since nucleation takes place only near
Becker-Döring limit. From our assumption that the mass
the earthquakes scales like the critical droplet, we have
the number of earthquakes or clusters per unit volume sc
asjd. But jd is related tos̄ through

s̄;j2d/3. ~5.25!

This follows from Eqs.~5.20! and~5.23!. Clearly this implies
from the above discussion and Eq.~5.19! that

nc~s!;
1

s̄3/2. ~5.26!

Figures 8 and 9 demonstrate that the simulations con
this analytic result. Note that even with the two differe
forms of the long-range interaction, as shown in Figs. 8 a
9, the model produces the same mean-field exponent.

This scaling exponent for clusters, together with assum
tions of how the slip scales with the number of failed block
translates into a Gutenburg-Richterb value of 3

4. If critical
slowing down is included in the nucleation rate, the sa

FIG. 7. Log-log plot of the mean cluster sizes̄ versus the effec-
tive spring constantK. The 2563256 system hasV;0, sF550,
KL51, W50.3, and q51088 using theKC /q interaction. The
straight line has a slope of 1, the predicted mean-field exponen
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arguments used above give a cluster scaling exponent
and ab value of 1. The reader interested in the details
referred to Ref.@47#.

As we mentioned above, the arrested nucleation drop
are associated with the large events. The smaller event
associated with the critical phenomena fluctuations near
spinodal. Since the clusters associated with the spinodal c
cal point have the same scaling as the arrested nuclea
droplets without critical slowing down@48,49#, we would
expect the same scaling for both regions of the cluster s
ing curves in Figs. 8 and 9. There should be a relative
placement in the straight lines but the normalization with
total number of clusters makes this displacement imposs
to see.

The scaling curve for the mean cluster size versusK will

FIG. 8. Log-log plot of the number of clustersnc(s) with s
failed blocks divided by the total number of clusters. T
1283128 system was run withV;0, sF550, sR50, andKL51,
using the truncated 1/r 3 interaction. The triangles are forK59.95
and the squares correspond toK590.45. The slope of the straigh
part of the curves is 1.560.1 for the triangles and 1.3860.15 for
the squares. Both slopes are consistent with3

2 as predicted by the
theory.

FIG. 9. Log-log plot of the number of clustersnc(s) with s
failed blocks divided by the total number of clusters. T
2563256 system was run withV;0, sF550, W50.3, KL51,
KC550, andq51088 using theKC /q interaction. The slope of the
straight part of the curve is 1.560.1, which is consistent with the
theory’s prediction of32.
2
s

ts
we
e
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e
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not be affected by the fact that the smaller clusters associ
with the critical phenomena fluctuations scale differen
than arrested nucleation droplets since the mean cluster
is dominated by the much larger clusters associated with
rested spinodal nucleation. The approximate size of th
two types of objects is estimated below.

Finally we point out that, while critical phenomena flu
tuations can explain the smaller cluster end of the clus
scaling curves in Figs. 8 and 9, they cannot explain the up
end of theses scaling plots. Conversely, arrested nuclea
droplets have the right scale for the larger end of the clu
scaling but not the lower end.

To see this, we return first to the mean sizes̄ of the
arrested nucleation droplets given in Eq.~5.23!, i.e.,

s̄5jdDh1/2. ~5.27!

SincejdDh1/25qDh21/2 in d52, we have that the arreste
nucleation droplets have a mean sizes̄;103. Clearly this is
only an estimate, buts̄ is consistent with the upper end of th
scaling plot in Fig. 9. We expect some spread in the size
the arrested nucleation droplets, but if the mean size is
order 103 it is difficult to imagine nucleation or activation
events at a scale of order 10, which is the lower end of
scaling plots in Figs. 8 and 9.

The solution to this problem we believe is to consid
another mechanism for events at the smaller mass sc
Since we are near a mean-field spinodal, or more precise
pseudospinodal, we should expect critical phenomena fl
tuations as well as arrested nucleation droplets. This is
analogy with the standard ‘‘f4’’ models @34#. We can esti-
mate the size of the clusters associated with the critical p
nomena fluctuations by first noting that the distance from
spinodal of the simulations that gave rise to the scaling p
in Figs. 8 and 9 is of order 1022. We can see that first by
noting that ifK21 is used as a scaling field as it is in Fig.
the straightest line is forK;102. In Fig. 9, where a slightly
different form of the potential is used, the value ofK is
0.531022. Note that Eq.~3.8! implies that for V;0 the
spinodal value ofK21;0.

For critcal phenomena clusters near spinodals, the mas
mean size scales as

s̄;
Dh1/2

RdDh3/22d/4 RdDh2d/4. ~5.28!

The derivation and details of this scaling can be found
Refs.@25# and@50#. With Dh;1022 andd52 we have that
the size of the clusters associated with critical phenom
fluctuations is on the order of 100. Note that the mean clu
size is an average over all clusters and hence is dominate
the larger clusters in the scaling plot. The mean size of 1
gives us an estimate of the region of the upper end of
cluster scaling associated with the critical phenomena c
ters. Larger clusters would be in the exponential decay. T
indicates, as stated earlier, that associating the larger en
the scaling plot for the ‘‘earthquakes’’ with critical phenom
ena fluctuations is untenable.

As a footnote to this section, we want to point out that t
derivation of these scaling laws implicitly makes use of t
fact that there is only one divergent length in the system t
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controls all singular behavior. This is the so-called hyp
scaling assumption. In general, mean-field systems do
have hyperscaling except in the upper critical dimensi
which in this case is 6@37#. However, the condition tha
nucleation take place only in the vicinity of the Becke
Döring limit fixes RdDh3/22d/4 and restores hyperscaling
The discussion of this point is subtle. The interested rea
can find the details in@50#.

VI. ENERGY-FLUCTUATION METRIC AND ERGODICITY

We have been applying equilibrium statistical mechan
to the CA model. Before we can use these methods, we m
establish that this model displays the characteristics of
equilibrium system under the conditions we have used in
simulations. Recently, Rundleet al. @14# demonstrated tha
the CA model exhibits Boltzmann fluctuations in its intern
energy field forK@1, i.e., near mean field. In this sectio
we present evidence that this model tends toward an erg
system as the interactions become long-range by using a
merical test, called the energy-fluctuation metricV(t) @15#,
which determines if a simulated system is effectively ergo
over an observational time scale. The quantityV(t) mea-
sures the difference between the time average and the
semble average of a system’s energy and is defined as

V~ t !5
1

N (
i 51

N

@e i~ t !2 ē~ t !#2, ~6.1!

where the sum runs over theN blocks of the system, the
running time average of blocki’s energye i(t) from t850 to
t is

e i~ t !5
1

t E0

t

e i~ t8!dt8, ~6.2!

and the spatial average of the energy is

ē~ t !5
1

N (
i 51

N

e i~ t !. ~6.3!

For ergodic systems,V(t);1/t @15#. Consequently, plots o
1/V(t) versust increase linearly if a system is effective
ergodic.

We will illustrate the effects of the loader plate veloci
V, interaction rangeR, and spring constantKC on the
energy-fluctuation metric 1/V. Figure 10 shows 1/V versus
loader plate updaten for constantR asV increases from 0.01
to 1 from top left to bottom right. Each plot uses the sa
abscissa scale for ease of comparison. The top two plot
not depict the initial transient due to the initial conditions. A
V decreases, 1/V becomes straighter and increases in a m
linear fashion over a longer time.

Figure 11 shows 1/V versusn for varying R. As in Fig.
10, each plot uses the same abscissa scale and does n
pict the initial transient. Comparing the top right and botto
two plots, observe that as the interaction range increa
from nearest neighbors toR54, 1/V becomes straighter an
increasingly linear over a longer time. Note that in the
plots, we are moving the loader plate at what we cal
‘‘critical’’ velocity Vc , in which frequency-size plots pro
-
ot
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er
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st
n
e

l

ic
u-

c

n-

e
do

e

de-

es

e
a

duce power-law scaling over a narrow range of velocit
centered aboutVc . We emphasize that this scaling resu
from the coalescence of typically many initial growth sit
during each plate update. While we recognize that this c
lescence violates the separation of time scales inheren
most earthquake processes, we have driven the system in
manner in order to have a reference velocityVc that gives
similar ‘‘critical’’ behavior for different interaction ranges
This allows us to examine the ergodicity differences for d
ferent interaction ranges,R. The top left and bottom right
plots in Fig. 11 show that for a constantV but differentR,
1/V shows a more linear increase over a longer time aR
goes from nearest neighbors toR54.

FIG. 10. Inverse of the energy-fluctuation metric 1/V versus
loader plate updaten for a 2563256 lattice with closed boundarie
andR54 (q580), using parameterssF550610 ~random uniform
distribution of failure thresholds!, sR50, andKC5KL51. From
left to right and top to bottom,V50.01, 0.15, 0.3086, and 1.

FIG. 11. Inverse of the energy-fluctuation metric 1/V versus
loader plate updaten using the same parameters as Fig. 10, exc
for R and V. From left to right and top to bottom,R5nearest
neighbors andV50.3086; R5nearest neighbors andV5Vc55.0;
R52 (q524) and V5Vc51.0; and R54 (q580) and V5Vc

50.3086.
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In comparison to Fig. 11, using realistic fault paramet
of V50.001, which produces about one initial growth s
per plate update, and ofKC5100 andKL51, which corre-
spond to strong coupling among the blocks and relativ
weak coupling to the loader plate, Fig. 12 shows that 1V
displays linear behavior over a long time. If we remove t
coupling among the blocks by settingKC50, the system
does not exhibit ergodic behavior, as shown in Fig. 13. H
the sinusoidal character of 1/V @16# arises from the quasip
eriodic movement of the blocks as the loader plate conti
ally drives them tosF and they relax tosR. The energy-
fluctuation results indicate that asV˜0 and asR and KC
increase, the CA system becomes more ergodic. This ob
vation, in conjunction with the previous findings demonstr
ing Boltzmann statistical fluctuations@14#, indicates that the
long-range, slowly driven CA system tends toward an eq
librium system.

Our interpretation of this result is that the free-ener
surface obtained by functionally integrating Eq.~3.6! has
multiple minima within the low stress phase. These mini
correspond to different energies. Small events, which

FIG. 12. Inverse of the energy fluctuation metric 1/V versus
loader plate updaten for a 2563256 lattice with closed boundarie
andR54 (q580), using parameterssF550, KL51, KC5100, V
50.001, andW50.1.

FIG. 13. Inverse of the energy-fluctuation metric 1/V versus
loader plate updaten using the same parameters as Fig. 12, exc
KC50.
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contained within the high stress region, as discussed in
preceding section, appear to leave the system in the s
free-energy minimum. Breakout events, which are relativ
rare in our simulations and become less frequent asq is
increased, seem to push the system into a new minim
This interpretation, and its confirmation, is the subject
current investigation.

VII. COARSE GRAINING REVISITED
AND ARRESTED NUCLEATION

In this section we return to the discussion of arres
nucleation. The question we need to address is what ca
the nucleation of the high stress phase to be halted so th
is never seen in these simulations. The answer to this q
tion requires that we reexamine the coarse-graining pro
dure and the derivation of Eq.~3.6!.

As discussed in Sec. IV, there is a coarse-graining ti
which is the fundamental time unit in our coarse-grain
description. That is, the fundamental time unit in Eq.~3.6! is
the time scale required to have the stress distribution i
coarse-grained volume become Gaussian. This will, as s
in Sec. IV, require a finite fraction of the number of blocks
the coarse-grained volume to fail. This time is not consta
however, in units of plate update time. Since the coar
graining time is the basic unit of time that we are forced
have once we adopt a coarse-grained description, this imp
that the unit of plate update time and, hence, the plate ve
ity is not constant but is in fact a fluctuating variable.

Clearly, the plate update number required to fail a fin
but fixed number of blocks depends on the size of
‘‘earthquake’’ events that occurs as that fraction of bloc
fails. The larger the events, the smaller the number of p
updates, and, hence, the slower the velocity of the plate
units of coarse-graining time. This implies that the coar
grained loading rate depends on the ‘‘earthquake’’ activ
during the coarse-grained time unit. We expect then that
velocity of stress loading, or the plate velocity, will be low
ered by increased ‘‘earthquake’’ activity and increased
decreased activity. In the mean-field model, all sites fail
the failure threshold as discussed in Sec. IV. This allows
to relate the number of failures in an event to the str
change. With these considerations we can express the t
dependent velocityV(t) as

V~t!5V1
a

L2 E dxW
]sD~xW ,t!

]t
, ~7.1!

whereL2 is the volume of the system ind52, a is a positive
constant, and the time derivative ofsD(xW ,t) is the rate at
which stress is dissipated atxW at timet. Note that for static
considerations the time derivative vanishes and we retur
the situation discussed in Sec. IV and Eq.~3.7!. However,
when we are considering time-dependent quantities,
*dxW @]sD(xW ,t)/]t# term in the plate velocity will now de-
pend ont. Also note that when the net rate of stress dissi
tion is negative, as would occur during times of large ear
quake activity, the time-dependent velocityV(t) is lower
than the bare velocityV, which is now the time average
over infinite time, ofV(t) in a steady state. The idea o
arrested nucleation is that large events are preceded b
t
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increased activity in this model and this activity drives t
plate velocity down, effectively raising the nucleation ba
rier.

There are three points that need to be made about
velocity modification. The first is that we can relate the tim
dependence of the velocity to the rate of stress dissipa
only in the mean-field limit where all blocks fail at the fai
ure threshold as discussed in Sec. IV. Second, the term

]sD~xW ,t!

]t
}Ab/pE

s0

sF

ds exp$2b@s2s̄~xW ,t!#2%,

~7.2!

as can be seen from Eqs.~3.4! and ~3.6!. Finally these con-
siderations predict that there should be increased activity
fore any large events that could be described as arre
nucleation, where ‘‘before’’ refers to the coarse-graini
time interval preceding the arrested nucleation event. T
has been seen to be correct. The data and a detailed di
sion will be presented in a future publication@29#. We have
also tested this idea by performing simulations@29# in which
the plate updates were done so that the amount of stres
into the system was proportional to the number of blocks t
failed after the preceding plate update. In the mean-fi
limit, this insures that the plate velocity is a constant in un
of the coarse-graining time. With this form of update, t
high stress phase was observed@29#, consistent with the
ideas presented in this section.

VIII. SUMMARY AND CONCLUSION

In this paper we have presented theoretical arguments
data that support our assertion made in a previous pub
tion @13# that slider-block models of the type described
Refs.@4# and @5# obey an Ito-Langevin equation in the lim
of long-range stress transfer. This derivation and the ene
fluctuation metric studies in Sec. VI also support our conc
sion, based on data analysis@14#, that the slider-block system
can be described with equilibrium techniques in the me
field limit. Also see Refs.@51# and @52# for additional dis-
cussion of this point.

The energy-fluctuation metric study in Sec. VI also sho
that the time scale over which the slider-block system can
described with equilibrium techniques for systems w
finite-range stress transfer is finite and grows longer as
range of the stress transfer increases.

The picture that emerges from these considerations is
multiple minima, high dimensional, free-energy surface~in
the system with noise! where the system remains trapped
a particular well for a time scale that diverges as the str
n,
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transfer range goes to infinity, that is, in the mean-field lim
Another result that emerges from this work is the assoc

tion of GR scaling with a spinodal, or pseudospinodal. W
have argued that the lower or smaller end of the cluster s
ing plots in Figs. 8 and 9 can be explained by associat
‘‘earthquake’’ events with critical phenomena fluctuation
However, the upper or larger end of the scaling plots ha
clusters that are too large to be explained by critical pheno
ena scaling at the distance the data were taken from the s
odal critical point. We have explained these larger eve
with the concept of arrested nucleation and provided a th
retical derivation of cluster number scaling, critical slowin
down, and cluster-size scaling that are consistent with d
from simulations of the model. We have also discussed
mechanism that we believe is responsible for the arrestin
the nucleation, namely that the plate velocity is not const
in the right time frame but must be treated as a fluctuat
variable. We have also mentioned the results of two ad
tional tests that support this idea@29#. This work, together
with the study in Ref.@46#, indicates that in this model ther
are at least three separate ‘‘earthquake’’ orders of magnit
that are generated by different mechanisms. The smalle
associated with critical phenomena fluctuations near
spinodal critical point. The second largest is associated w
arrested spinodal nucleation and the third, which is not
the scaling plot~i.e., these events do not scale on a sin
fault!, is associated with breakout events.

Finally, these results raise several interesting questio
Among them are the relation between the events of differ
sizes that we have seen and the different size events se
the work of Carlson, Langer, and Shaw@6#, the possible
existence of additional event size scales, the possible con
tion between breakout events and the breaking of ergodi
in the energy-fluctuation metric, and the relation between
events on the various size scales. For example, can cri
phenomena size events trigger a breakout event or can
only be done by an arrested nucleation event? These
other questions raised by this work are currently being p
sued.
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